--- library_name: transformers language: - ar license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - darija-c metrics: - bleu model-index: - name: Finetuned Whisper large-v3-turbo0 for darija speech translation results: [] --- # Finetuned Whisper large-v3-turbo0 for darija speech translation This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Darija-C dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Bleu: 0.9369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-------:|:----:|:---------------:|:------:| | 2.4675 | 2.2727 | 50 | 1.2036 | 0.2616 | | 0.8385 | 4.5455 | 100 | 0.4859 | 0.5348 | | 0.3255 | 6.8182 | 150 | 0.1448 | 0.7604 | | 0.1266 | 9.0909 | 200 | 0.0588 | 0.8582 | | 0.0654 | 11.3636 | 250 | 0.0501 | 0.8531 | | 0.0427 | 13.6364 | 300 | 0.0336 | 0.8875 | | 0.0315 | 15.9091 | 350 | 0.0209 | 0.9159 | | 0.0188 | 18.1818 | 400 | 0.0214 | 0.8977 | | 0.0193 | 20.4545 | 450 | 0.0103 | 0.9233 | | 0.012 | 22.7273 | 500 | 0.0053 | 0.9329 | | 0.0084 | 25.0 | 550 | 0.0089 | 0.9291 | | 0.0072 | 27.2727 | 600 | 0.0028 | 0.9332 | | 0.0031 | 29.5455 | 650 | 0.0042 | 0.9326 | | 0.0032 | 31.8182 | 700 | 0.0045 | 0.9318 | | 0.0026 | 34.0909 | 750 | 0.0005 | 0.9362 | | 0.0008 | 36.3636 | 800 | 0.0004 | 0.9364 | | 0.0006 | 38.6364 | 850 | 0.0003 | 0.9369 | | 0.0003 | 40.9091 | 900 | 0.0003 | 0.9369 | | 0.0003 | 43.1818 | 950 | 0.0003 | 0.9369 | | 0.0003 | 45.4545 | 1000 | 0.0003 | 0.9369 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 2.19.2 - Tokenizers 0.21.0