--- license: afl-3.0 base_model: masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0 tags: - generated_from_trainer metrics: - f1 - precision - recall - accuracy model-index: - name: ewc_stabilised_no_date_lambda0.4 results: [] --- # ewc_stabilised_no_date_lambda0.4 This model is a fine-tuned version of [masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0](https://huggingface.co/masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1841 - F1: 0.8384 - Precision: 0.8348 - Recall: 0.8421 - Accuracy: 0.9649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.3292 | 0.9993 | 701 | 0.1360 | 0.7966 | 0.7971 | 0.7961 | 0.9564 | | 0.1207 | 2.0 | 1403 | 0.1172 | 0.8235 | 0.8146 | 0.8326 | 0.9623 | | 0.0891 | 2.9993 | 2104 | 0.1133 | 0.8348 | 0.8307 | 0.8390 | 0.9640 | | 0.0684 | 4.0 | 2806 | 0.1172 | 0.8386 | 0.8411 | 0.8362 | 0.9650 | | 0.0527 | 4.9993 | 3507 | 0.1268 | 0.8371 | 0.8302 | 0.8441 | 0.9645 | | 0.0414 | 6.0 | 4209 | 0.1425 | 0.8390 | 0.8329 | 0.8453 | 0.9649 | | 0.0329 | 6.9993 | 4910 | 0.1532 | 0.8385 | 0.8374 | 0.8396 | 0.9647 | | 0.0263 | 8.0 | 5612 | 0.1650 | 0.8359 | 0.8287 | 0.8433 | 0.9645 | | 0.0222 | 8.9993 | 6313 | 0.1793 | 0.8396 | 0.8398 | 0.8395 | 0.9652 | | 0.019 | 9.9929 | 7010 | 0.1841 | 0.8384 | 0.8348 | 0.8421 | 0.9649 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1