--- license: mit base_model: distil-whisper/distil-medium.en tags: - generated_from_trainer datasets: - dysarthria metrics: - accuracy model-index: - name: distil-medium.en-dysarthia-non-dysathira-detection-fm results: - task: name: Audio Classification type: audio-classification dataset: name: Dysarthria type: dysarthria config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.975 --- # distil-medium.en-dysarthia-non-dysathira-detection-fm This model is a fine-tuned version of [distil-whisper/distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en) on the Dysarthria dataset. It achieves the following results on the evaluation set: - Loss: 0.1593 - Accuracy: 0.975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.875 | 1.0 | 160 | 0.4243 | 0.8875 | | 0.0264 | 2.0 | 320 | 1.2160 | 0.8125 | | 0.0115 | 3.0 | 480 | 0.2111 | 0.95 | | 0.3632 | 4.0 | 640 | 0.1856 | 0.975 | | 0.0933 | 5.0 | 800 | 0.7655 | 0.9 | | 0.0003 | 6.0 | 960 | 0.6221 | 0.9 | | 0.0001 | 7.0 | 1120 | 0.1163 | 0.9875 | | 0.0001 | 8.0 | 1280 | 0.3188 | 0.95 | | 0.0001 | 9.0 | 1440 | 0.1662 | 0.975 | | 0.0001 | 10.0 | 1600 | 0.1593 | 0.975 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1