import torch import torch.nn as nn from .eva_vit import create_eva_vit_g, _cfg from .processor import ImageTrainProcessor, ImageEvalProcessor class EVAVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() else: self.cfg_only = _cfg() def load_model(self): self.image_processor = ImageTrainProcessor() self.image_eval_processor = ImageEvalProcessor() self.vision_tower = create_eva_vit_g( img_size=224, drop_path_rate=0, use_checkpoint=False, precision="fp16" ) # self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_forward_outs, select_feature='patch'): image_features = image_forward_outs[self.select_layer] if select_feature == 'patch': image_features = image_features[:, 1:] elif select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images, select_feature='patch'): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower.get_intermediate_layers(image.to(device=self.device, dtype=self.dtype).unsqueeze(0),) image_feature = self.feature_select(image_forward_out, select_feature).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower.get_intermediate_layers(images.to(device=self.device, dtype=self.dtype)) image_features = self.feature_select(image_forward_outs, select_feature).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.cls_token.dtype @property def device(self): return self.vision_tower.cls_token.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.vision_tower.num_features @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2