Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,11 @@ license: mit
|
|
4 |
language:
|
5 |
- th
|
6 |
pipeline_tag: image-to-text
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
# Blip2-Typhoon1.5-COCO
|
@@ -13,7 +18,7 @@ pipeline_tag: image-to-text
|
|
13 |
Blip2-Typhoon1.5-COCO is a powerful image captioning model designed to generate descriptive captions for images. This model leverages the strengths of both the BLIP2 and Typhoon architectures to provide high-quality, contextually accurate descriptions. The base models used are:
|
14 |
|
15 |
- **Encoder**: [Salesforce/blip2-opt-2.7b-coco](https://huggingface.co/Salesforce/blip2-opt-2.7b-coco)
|
16 |
-
- **Decoder**: [scb10x/llama-3-typhoon-v1.
|
17 |
|
18 |
The BLIP2 encoder extracts visual features from images, while the Typhoon decoder generates natural language descriptions based on these features.
|
19 |
|
@@ -25,7 +30,7 @@ This model was trained on the COCO 2017 dataset, a widely-used benchmark dataset
|
|
25 |
|
26 |
- **Datasets**: COCO 2017
|
27 |
- **Encoder**: Salesforce/blip2-opt-2.7b-coco
|
28 |
-
- **Decoder**: scb10x/llama-3-typhoon-v1.
|
29 |
- **Training Framework**: [Hugging Face Transformers](https://huggingface.co/transformers/)
|
30 |
- **Hardware**: High-performance GPUs for efficient training
|
31 |
|
@@ -72,4 +77,4 @@ If you use this model in your research, please cite:
|
|
72 |
publisher = {Hugging Face},
|
73 |
note = {https://huggingface.co/MagiBoss/Blip2-Typhoon1.5-COCO}
|
74 |
}
|
75 |
-
```
|
|
|
4 |
language:
|
5 |
- th
|
6 |
pipeline_tag: image-to-text
|
7 |
+
datasets:
|
8 |
+
- MagiBoss/COCO-Image-Captioning
|
9 |
+
base_model:
|
10 |
+
- Salesforce/blip2-opt-2.7b-coco
|
11 |
+
- scb10x/llama-3-typhoon-v1.5-8b
|
12 |
---
|
13 |
|
14 |
# Blip2-Typhoon1.5-COCO
|
|
|
18 |
Blip2-Typhoon1.5-COCO is a powerful image captioning model designed to generate descriptive captions for images. This model leverages the strengths of both the BLIP2 and Typhoon architectures to provide high-quality, contextually accurate descriptions. The base models used are:
|
19 |
|
20 |
- **Encoder**: [Salesforce/blip2-opt-2.7b-coco](https://huggingface.co/Salesforce/blip2-opt-2.7b-coco)
|
21 |
+
- **Decoder**: [scb10x/llama-3-typhoon-v1.5-8b](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b)
|
22 |
|
23 |
The BLIP2 encoder extracts visual features from images, while the Typhoon decoder generates natural language descriptions based on these features.
|
24 |
|
|
|
30 |
|
31 |
- **Datasets**: COCO 2017
|
32 |
- **Encoder**: Salesforce/blip2-opt-2.7b-coco
|
33 |
+
- **Decoder**: scb10x/llama-3-typhoon-v1.5-8b
|
34 |
- **Training Framework**: [Hugging Face Transformers](https://huggingface.co/transformers/)
|
35 |
- **Hardware**: High-performance GPUs for efficient training
|
36 |
|
|
|
77 |
publisher = {Hugging Face},
|
78 |
note = {https://huggingface.co/MagiBoss/Blip2-Typhoon1.5-COCO}
|
79 |
}
|
80 |
+
```
|