MagiBoss commited on
Commit
2a312ec
·
1 Parent(s): 9adb6b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -3
README.md CHANGED
@@ -4,6 +4,11 @@ license: mit
4
  language:
5
  - th
6
  pipeline_tag: image-to-text
 
 
 
 
 
7
  ---
8
 
9
  # Blip2-Typhoon1.5-COCO
@@ -13,7 +18,7 @@ pipeline_tag: image-to-text
13
  Blip2-Typhoon1.5-COCO is a powerful image captioning model designed to generate descriptive captions for images. This model leverages the strengths of both the BLIP2 and Typhoon architectures to provide high-quality, contextually accurate descriptions. The base models used are:
14
 
15
  - **Encoder**: [Salesforce/blip2-opt-2.7b-coco](https://huggingface.co/Salesforce/blip2-opt-2.7b-coco)
16
- - **Decoder**: [scb10x/llama-3-typhoon-v1.5x-8b](https://huggingface.co/scb10x/llama-3-typhoon-v1.5x-8b)
17
 
18
  The BLIP2 encoder extracts visual features from images, while the Typhoon decoder generates natural language descriptions based on these features.
19
 
@@ -25,7 +30,7 @@ This model was trained on the COCO 2017 dataset, a widely-used benchmark dataset
25
 
26
  - **Datasets**: COCO 2017
27
  - **Encoder**: Salesforce/blip2-opt-2.7b-coco
28
- - **Decoder**: scb10x/llama-3-typhoon-v1.5x-8b
29
  - **Training Framework**: [Hugging Face Transformers](https://huggingface.co/transformers/)
30
  - **Hardware**: High-performance GPUs for efficient training
31
 
@@ -72,4 +77,4 @@ If you use this model in your research, please cite:
72
  publisher = {Hugging Face},
73
  note = {https://huggingface.co/MagiBoss/Blip2-Typhoon1.5-COCO}
74
  }
75
- ```
 
4
  language:
5
  - th
6
  pipeline_tag: image-to-text
7
+ datasets:
8
+ - MagiBoss/COCO-Image-Captioning
9
+ base_model:
10
+ - Salesforce/blip2-opt-2.7b-coco
11
+ - scb10x/llama-3-typhoon-v1.5-8b
12
  ---
13
 
14
  # Blip2-Typhoon1.5-COCO
 
18
  Blip2-Typhoon1.5-COCO is a powerful image captioning model designed to generate descriptive captions for images. This model leverages the strengths of both the BLIP2 and Typhoon architectures to provide high-quality, contextually accurate descriptions. The base models used are:
19
 
20
  - **Encoder**: [Salesforce/blip2-opt-2.7b-coco](https://huggingface.co/Salesforce/blip2-opt-2.7b-coco)
21
+ - **Decoder**: [scb10x/llama-3-typhoon-v1.5-8b](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b)
22
 
23
  The BLIP2 encoder extracts visual features from images, while the Typhoon decoder generates natural language descriptions based on these features.
24
 
 
30
 
31
  - **Datasets**: COCO 2017
32
  - **Encoder**: Salesforce/blip2-opt-2.7b-coco
33
+ - **Decoder**: scb10x/llama-3-typhoon-v1.5-8b
34
  - **Training Framework**: [Hugging Face Transformers](https://huggingface.co/transformers/)
35
  - **Hardware**: High-performance GPUs for efficient training
36
 
 
77
  publisher = {Hugging Face},
78
  note = {https://huggingface.co/MagiBoss/Blip2-Typhoon1.5-COCO}
79
  }
80
+ ```