MattiaBonfanti-CS commited on
Commit
177279f
·
1 Parent(s): 2fd8d40

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -1
README.md CHANGED
@@ -7,4 +7,49 @@ tags:
7
  - code
8
  ---
9
 
10
- Fine-tuned from: https://huggingface.co/WizardLM/WizardCoder-1B-V1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  - code
8
  ---
9
 
10
+ # ML4SE23_G1_WizardCoder-SCoT-1B-V1.0
11
+
12
+ IN4334 ML4SE
13
+
14
+ Group1 WizardCoder
15
+
16
+ This model is the result of the fine-tunign of the WizardCoder-1B-V1.0 model using Structured Chain-of-Though (S-CoT) enhanced instructions.
17
+ S-CoT is used to enhance a sample of about 1200 entries from the Evol-Instruct 80k dataset.
18
+ The resulting dataset is then used for the training task.
19
+ The current WizardCoder model and the new S-CoT fine-tuned one are compared on both versions of HumanEval and MBPP (S-CoT enhanced and not) on the pass@1 metric.
20
+ The S-CoT enhancement of the evaluation datasets allows to study its effect when used just as a prompting technique, independently of the S-CoT fine-tuning of the model.
21
+
22
+ ## Fine-tuning Details
23
+
24
+ | Hyperparameter | [WizardCoder-1B-V1.0](https://huggingface.co/WizardLM/WizardCoder-1B-V1.0) |
25
+ |----------------|---------------------|
26
+ | Batch size | 16 |
27
+ | Learning rate | 2e-5 |
28
+ | Epochs | 3 |
29
+ | Max length | 2048 |
30
+ | Warmup step | 30 |
31
+ | LR scheduler | cosine |
32
+ | Dataset | [ML4SE23_G1_EvolInstruct-SCoT-1k](https://huggingface.co/datasets/ML4SE2023-G1-WizardCoder/ML4SE23_G1_EvolInstruct-SCoT-1k) |
33
+
34
+ The hardware consisted on a GPU instance rented from [DataCrunch](https://datacrunch.io/) with the following specifications:
35
+
36
+ | NVidia RTX A6000 48GB 1A6000.10V |
37
+ |----------------------------------|
38
+ | 2 GPUs |
39
+ | 48GB VRAM per GPU |
40
+ | 60 GB RAM |
41
+ | 10 CPUs |
42
+ | 100GB SSD Storage |
43
+ | Ubuntu 20.04 |
44
+ | CUDA 11.6 |
45
+
46
+ ## Results
47
+
48
+ Results of pass@1(%) on HumanEval and MBPP compared to HumanEval-SCoT and MBPP-SCoT using WizardCoder-1B, WizardCoder-SCoT-1B and WizardCoder-15B.
49
+
50
+ | **Dataset** | **WizardCoder-1B-V1.0** | **WizardCoder-SCoT-1B-V1.0** | **WizardCoder-15B-V1.0** |
51
+ |----------------|-------------------------|------------------------------|--------------------------|
52
+ | HumanEval | 23.78 | **17.68** | 57.3 |
53
+ | HumanEval-SCoT | **44.51** | **27.44** | **57.3** |
54
+ | MBPP | 23.4 | **19.4** | 51.8 |
55
+ | MBPP-SCoT | **40** | **28** | **45.6** |