Commit
·
177279f
1
Parent(s):
2fd8d40
Update README.md
Browse files
README.md
CHANGED
@@ -7,4 +7,49 @@ tags:
|
|
7 |
- code
|
8 |
---
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- code
|
8 |
---
|
9 |
|
10 |
+
# ML4SE23_G1_WizardCoder-SCoT-1B-V1.0
|
11 |
+
|
12 |
+
IN4334 ML4SE
|
13 |
+
|
14 |
+
Group1 WizardCoder
|
15 |
+
|
16 |
+
This model is the result of the fine-tunign of the WizardCoder-1B-V1.0 model using Structured Chain-of-Though (S-CoT) enhanced instructions.
|
17 |
+
S-CoT is used to enhance a sample of about 1200 entries from the Evol-Instruct 80k dataset.
|
18 |
+
The resulting dataset is then used for the training task.
|
19 |
+
The current WizardCoder model and the new S-CoT fine-tuned one are compared on both versions of HumanEval and MBPP (S-CoT enhanced and not) on the pass@1 metric.
|
20 |
+
The S-CoT enhancement of the evaluation datasets allows to study its effect when used just as a prompting technique, independently of the S-CoT fine-tuning of the model.
|
21 |
+
|
22 |
+
## Fine-tuning Details
|
23 |
+
|
24 |
+
| Hyperparameter | [WizardCoder-1B-V1.0](https://huggingface.co/WizardLM/WizardCoder-1B-V1.0) |
|
25 |
+
|----------------|---------------------|
|
26 |
+
| Batch size | 16 |
|
27 |
+
| Learning rate | 2e-5 |
|
28 |
+
| Epochs | 3 |
|
29 |
+
| Max length | 2048 |
|
30 |
+
| Warmup step | 30 |
|
31 |
+
| LR scheduler | cosine |
|
32 |
+
| Dataset | [ML4SE23_G1_EvolInstruct-SCoT-1k](https://huggingface.co/datasets/ML4SE2023-G1-WizardCoder/ML4SE23_G1_EvolInstruct-SCoT-1k) |
|
33 |
+
|
34 |
+
The hardware consisted on a GPU instance rented from [DataCrunch](https://datacrunch.io/) with the following specifications:
|
35 |
+
|
36 |
+
| NVidia RTX A6000 48GB 1A6000.10V |
|
37 |
+
|----------------------------------|
|
38 |
+
| 2 GPUs |
|
39 |
+
| 48GB VRAM per GPU |
|
40 |
+
| 60 GB RAM |
|
41 |
+
| 10 CPUs |
|
42 |
+
| 100GB SSD Storage |
|
43 |
+
| Ubuntu 20.04 |
|
44 |
+
| CUDA 11.6 |
|
45 |
+
|
46 |
+
## Results
|
47 |
+
|
48 |
+
Results of pass@1(%) on HumanEval and MBPP compared to HumanEval-SCoT and MBPP-SCoT using WizardCoder-1B, WizardCoder-SCoT-1B and WizardCoder-15B.
|
49 |
+
|
50 |
+
| **Dataset** | **WizardCoder-1B-V1.0** | **WizardCoder-SCoT-1B-V1.0** | **WizardCoder-15B-V1.0** |
|
51 |
+
|----------------|-------------------------|------------------------------|--------------------------|
|
52 |
+
| HumanEval | 23.78 | **17.68** | 57.3 |
|
53 |
+
| HumanEval-SCoT | **44.51** | **27.44** | **57.3** |
|
54 |
+
| MBPP | 23.4 | **19.4** | 51.8 |
|
55 |
+
| MBPP-SCoT | **40** | **28** | **45.6** |
|