jeffliu-LL commited on
Commit
ee844dc
·
verified ·
1 Parent(s): 789243d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -168
README.md CHANGED
@@ -1,199 +1,121 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ widget:
5
+ - src: https://fema-cap-imagery.s3.amazonaws.com/Images/CAP_-_Flooding_Spring_2023/Source/IAWG_23-B-5061/A0005/D75_0793_DxO_PL6_P.jpg
6
+ - example_title: Example classification of flooded scene
7
  ---
8
+ # Model Card for MITLL/LADI-v2-classifier-small-reference
9
+ LADI-v2-classifier-small-reference is based on [google/bit-50](https://huggingface.co/google/bit-50) and fine-tuned on the LADI v2_resized dataset. LADI-v2-classifier is trained to identify labels of interest to disaster response managers from aerial images.
10
 
11
+ This model is the 'reference' version of the model, which is trained on 80% of the 10,000 available images. It is provided to facilitate reproduction of our paper and is not intended to be used in deployment.
 
 
 
 
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
+ The model architecture is based on Google's bit-50 model and fine-tuned on the LADI v2 dataset, which contains 10,000 aerial images labeled by volunteers from the Civil Air Patrol. The images are labeled using multi-label classification for the following classes:
17
+
18
+ - bridges_any
19
+ - buildings_any
20
+ - buildings_affected_or_greater
21
+ - buildings_minor_or_greater
22
+ - debris_any
23
+ - flooding_any
24
+ - flooding_structures
25
+ - roads_any
26
+ - roads_damage
27
+ - trees_any
28
+ - trees_damage
29
+ - water_any
30
+
31
+ This 'reference' model is trained on the training split, which contains 8,000 images from 2015-2022. It is provided for the purpose of reproducing the results from the paper. The 'deploy' model is trained on the training, validation, and test sets, and contains 10,000 images from 2015-2023. We recommend that anyone who wishes to use this model in production use the deploy model.
32
+
33
+ - **Developed by:** Jeff Liu, Sam Scheele
34
+ - **Funded by:** Department of the Air Force under Air Force Contract No. FA8702-15-D-0001
35
+ - **License:** MIT
36
+ - **Finetuned from model:** [google/bit-50](https://huggingface.co/google/bit-50)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  ## How to Get Started with the Model
39
 
40
+ LADI-v2-classifier-small-reference is trained to identify features of interest to disaster response managers from aerial images. Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ The simplest way to perform inference is using the pipeline interface
43
 
44
+ ```python
45
+ from transformers import pipeline
46
+ image_url = "https://fema-cap-imagery.s3.amazonaws.com/Images/CAP_-_Flooding_Spring_2023/Source/IAWG_23-B-5061/A0005/D75_0793_DxO_PL6_P.jpg"
47
 
48
+ pipe = pipeline(model="MITLL/LADI-v2-classifier-small-reference")
49
+ print(pipe(image_url))
50
+ ```
51
 
52
+ ```
53
+ [{'label': 'flooding_any', 'score': 0.9986758828163147},
54
+ {'label': 'buildings_any', 'score': 0.9982584118843079},
55
+ {'label': 'flooding_structures', 'score': 0.998119056224823},
56
+ {'label': 'water_any', 'score': 0.9967329502105713},
57
+ {'label': 'buildings_affected_or_greater', 'score': 0.9903663396835327}]
58
+ ```
59
 
60
+ For finer-grained control, see below:
61
 
62
+ ```python
63
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
64
+ import torch
65
+ import requests
66
+ from PIL import Image
67
+ from io import BytesIO
68
 
69
+ image_url = "https://fema-cap-imagery.s3.amazonaws.com/Images/CAP_-_Flooding_Spring_2023/Source/IAWG_23-B-5061/A0005/D75_0793_DxO_PL6_P.jpg"
70
 
71
+ img_data = requests.get(image_url).content
72
+ img = Image.open(BytesIO(img_data))
73
 
74
+ processor = AutoImageProcessor.from_pretrained("MITLL/LADI-v2-classifier-small-reference")
75
+ model = AutoModelForImageClassification.from_pretrained("MITLL/LADI-v2-classifier-small-reference")
76
 
77
+ inputs = processor(img, return_tensors="pt")
78
 
79
+ with torch.no_grad():
80
+ logits = model(**inputs).logits
81
 
82
+ predictions = torch.sigmoid(logits).detach().numpy()[0]
83
+ labels = [(model.config.id2label[idx], predictions[idx]) for idx in range(len(predictions))]
84
+ print(labels)
85
+ ```
86
 
87
+ ```
88
+ [('bridges_any', 0.76203513),
89
+ ('buildings_any', 0.9982584),
90
+ ('buildings_affected_or_greater', 0.99036634),
91
+ ('buildings_minor_or_greater', 0.57826394),
92
+ ('debris_any', 0.18689156),
93
+ ('flooding_any', 0.9986759),
94
+ ('flooding_structures', 0.99811906),
95
+ ('roads_any', 0.973596),
96
+ ('roads_damage', 0.91898227),
97
+ ('trees_any', 0.91444755),
98
+ ('trees_damage', 0.7382976),
99
+ ('water_any', 0.99673295)]
100
+ ```
101
 
102
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  **BibTeX:**
105
 
106
+ ```
107
+ ```
 
108
 
109
+ Paper forthcoming - watch this space for details
110
 
111
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
114
+
115
+ This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force.
116
+
117
+ © 2024 Massachusetts Institute of Technology.
118
+
119
+ The software/firmware is provided to you on an As-Is basis
120
+
121
+ Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.