File size: 1,342 Bytes
c094972 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: cc-by-4.0
---
# ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video(ECCV2024)
This repo is the official model checkpoints of ["ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video"](https://arxiv.org/abs/2310.01324)(ECCV2024)
## Models
We provide the checkpoints before reparameterization, you could reparameter the weight refer to `tools\weight_reparam.py` in our [codes](https://github.com/MCG-NJU/ZeroI2V/blob/main/tools/weight_reparam.py).
### Kinetics 400
| Backbone | Pretrain | GFLOPs | Param | New Param (M) | acc@1 | Views
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ViT-B/16 | CLIP | 422 | 86 | 0 | 83.0 | 8x1x3 |
| ViT-L/14 | CLIP | 1946 | 304 | 0 | 86.3 | 8x1x3 |
| ViT-L/14 | CLIP | 7783 | 304 | 0 | 87.2 | 32x1x3 |
### Something Something V2
| Backbone | Pretrain | GFLOPs | Param | New Param (M) | acc@1 | Views |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ViT-L/14 | CLIP | 7783 | 304 | 0 | 72.2 | 32x3x1 |
If you find our work useful in your research, please cite:
```
@article{li2023zeroi2v,
title={ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video},
author={Li, Xinhao and Zhu, Yuhan and Wang, Limin},
journal={arXiv preprint arXiv:2310.01324},
year={2023}
}
```
|