Upload folder using huggingface_hub
Browse files- config.json +3 -3
- geopixel.py +411 -0
- pytorch_model.bin.index.json +2 -2
config.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attn_implementation": "flash_attention_2",
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
|
9 |
"AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
|
10 |
-
"AutoModelForCausalLM": "
|
11 |
},
|
12 |
"bias": false,
|
13 |
"bos_token_id": 1,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "AkashahS/GeoPixel-7B",
|
3 |
"architectures": [
|
4 |
+
"GeoPixelForCausalLM"
|
5 |
],
|
6 |
"attn_implementation": "flash_attention_2",
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
|
9 |
"AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
|
10 |
+
"AutoModelForCausalLM": "geopixel.GeoPixelForCausalLM"
|
11 |
},
|
12 |
"bias": false,
|
13 |
"bos_token_id": 1,
|
geopixel.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import torch.nn as nn
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from PIL import Image
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11 |
+
from model.IXC.modeling_internlm_xcomposer2 import InternLMXComposer2ForCausalLM
|
12 |
+
from model.IXC.modeling_internlm2 import InternLM2Model
|
13 |
+
from model.sam2.build_sam import build_sam2_hf
|
14 |
+
from model.sam2.utils.transforms import SAM2Transforms
|
15 |
+
try:
|
16 |
+
from transformers.generation.streamers import BaseStreamer
|
17 |
+
except: # noqa # pylint: disable=bare-except
|
18 |
+
BaseStreamer = None
|
19 |
+
|
20 |
+
|
21 |
+
def dice_loss(
|
22 |
+
inputs: torch.Tensor,
|
23 |
+
targets: torch.Tensor,
|
24 |
+
num_masks: float,
|
25 |
+
scale=1000, # 100000.0,
|
26 |
+
eps=1e-6,
|
27 |
+
):
|
28 |
+
"""
|
29 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
30 |
+
Args:
|
31 |
+
inputs: A float tensor of arbitrary shape.
|
32 |
+
The predictions for each example.
|
33 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
34 |
+
classification label for each element in inputs
|
35 |
+
(0 for the negative class and 1 for the positive class).
|
36 |
+
"""
|
37 |
+
inputs = inputs.sigmoid()
|
38 |
+
inputs = inputs.flatten(1, 2)
|
39 |
+
targets = targets.flatten(1, 2)
|
40 |
+
numerator = 2 * (inputs / scale * targets).sum(-1)
|
41 |
+
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
|
42 |
+
loss = 1 - (numerator + eps) / (denominator + eps)
|
43 |
+
loss = loss.sum() / (num_masks + 1e-8)
|
44 |
+
return loss
|
45 |
+
|
46 |
+
|
47 |
+
def sigmoid_ce_loss(
|
48 |
+
inputs: torch.Tensor,
|
49 |
+
targets: torch.Tensor,
|
50 |
+
num_masks: float,
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
Args:
|
54 |
+
inputs: A float tensor of arbitrary shape.
|
55 |
+
The predictions for each example.
|
56 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
57 |
+
classification label for each element in inputs
|
58 |
+
(0 for the negative class and 1 for the positive class).
|
59 |
+
Returns:
|
60 |
+
Loss tensor
|
61 |
+
"""
|
62 |
+
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
63 |
+
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
|
64 |
+
return loss
|
65 |
+
|
66 |
+
|
67 |
+
class GeoPixelMetaModel:
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
config,
|
71 |
+
**kwargs,
|
72 |
+
):
|
73 |
+
super(GeoPixelMetaModel, self).__init__(config)
|
74 |
+
self.config = config
|
75 |
+
self.config.train_mask_decoder = getattr(self.config, "train_mask_decoder", kwargs.get("train_mask_decoder", False))
|
76 |
+
self.config.out_dim = getattr(self.config, "out_dim", kwargs.get("out_dim", 256))
|
77 |
+
self.vision_pretrained = kwargs.get("vision_pretrained", None)
|
78 |
+
self.initialize_geopixel_modules(self.config)
|
79 |
+
|
80 |
+
def initialize_geopixel_modules(self, config):
|
81 |
+
# grounding vision model
|
82 |
+
self.visual_model = build_sam2_hf(self.vision_pretrained)
|
83 |
+
|
84 |
+
self._transform = SAM2Transforms(
|
85 |
+
resolution=self.visual_model.image_size,
|
86 |
+
mask_threshold=0.0,
|
87 |
+
max_hole_area=0.0,
|
88 |
+
max_sprinkle_area=0.0,
|
89 |
+
)
|
90 |
+
# Spatial dim for backbone feature maps
|
91 |
+
self._bb_feat_sizes = [
|
92 |
+
(256, 256),
|
93 |
+
(128, 128),
|
94 |
+
(64, 64),
|
95 |
+
]
|
96 |
+
for param in self.visual_model.parameters():
|
97 |
+
param.requires_grad = False
|
98 |
+
if config.train_mask_decoder:
|
99 |
+
self.visual_model.sam_mask_decoder.train()
|
100 |
+
for param in self.visual_model.sam_mask_decoder.parameters():
|
101 |
+
param.requires_grad = True
|
102 |
+
|
103 |
+
# text projection layer
|
104 |
+
in_dim = config.hidden_size
|
105 |
+
out_dim = config.out_dim
|
106 |
+
text_projection_layers = [
|
107 |
+
nn.Linear(in_dim, in_dim),
|
108 |
+
nn.ReLU(inplace=True),
|
109 |
+
nn.Linear(in_dim, out_dim),
|
110 |
+
nn.Dropout(0.0),
|
111 |
+
]
|
112 |
+
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_projection_layers)])
|
113 |
+
self.text_hidden_fcs.train()
|
114 |
+
for param in self.text_hidden_fcs.parameters():
|
115 |
+
param.requires_grad = True
|
116 |
+
|
117 |
+
|
118 |
+
class GeoPixelModel(GeoPixelMetaModel, InternLM2Model):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
config,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
super(GeoPixelModel, self).__init__(config, **kwargs)
|
125 |
+
self.config.use_cache = False
|
126 |
+
|
127 |
+
|
128 |
+
class GeoPixelForCausalLM(InternLMXComposer2ForCausalLM):
|
129 |
+
def __init__(self,config,**kwargs,):
|
130 |
+
|
131 |
+
self.ce_loss_weight = kwargs.pop("ce_loss_weight", None)
|
132 |
+
self.dice_loss_weight = kwargs.pop("dice_loss_weight", None)
|
133 |
+
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
|
134 |
+
self.seg_token_idx = kwargs.pop("seg_token_idx")
|
135 |
+
|
136 |
+
super().__init__(config)
|
137 |
+
self.model = GeoPixelModel(config, **kwargs)
|
138 |
+
self.vocab_size = config.vocab_size
|
139 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
140 |
+
self.post_init()
|
141 |
+
|
142 |
+
def encode_g_img(self, image):
|
143 |
+
"""
|
144 |
+
Calculates the image embeddings for the provided image
|
145 |
+
Arguments:
|
146 |
+
image (np.ndarray or str)
|
147 |
+
"""
|
148 |
+
if image is None:
|
149 |
+
return None
|
150 |
+
if isinstance(image, str):
|
151 |
+
_, ext = os.path.splitext(image)
|
152 |
+
if ext.lower() in {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp','.tif'}:
|
153 |
+
image = Image.open(image)
|
154 |
+
w, h = image.size
|
155 |
+
_orig_hw = [(h, w)]
|
156 |
+
else:
|
157 |
+
print ('Unknow input format', image)
|
158 |
+
return None
|
159 |
+
else:
|
160 |
+
assert isinstance(image, torch.Tensor)
|
161 |
+
_orig_hw = [image.shape[:2]]
|
162 |
+
image = self.model._transform(image)
|
163 |
+
image = image[None, ...].to(self.device)
|
164 |
+
assert ( len(image.shape) == 4 and image.shape[1] == 3), f"image must be of size 1x3xHxW, got {image.shape}"
|
165 |
+
features = self.get_visual_embs(image)
|
166 |
+
return features,_orig_hw
|
167 |
+
|
168 |
+
def get_visual_embs(self, img_batch: torch.FloatTensor):
|
169 |
+
with torch.no_grad():
|
170 |
+
torch.cuda.empty_cache()
|
171 |
+
img_batch = img_batch.to(self.device)
|
172 |
+
batch_size = img_batch.shape[0]
|
173 |
+
assert (
|
174 |
+
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
|
175 |
+
), f"grounding_img_batch must be of size Bx3xHxW, got {img_batch.shape}"
|
176 |
+
backbone_out = self.model.visual_model.forward_image(img_batch)
|
177 |
+
_, vision_feats, _, _ = self.model.visual_model._prepare_backbone_features(backbone_out)
|
178 |
+
if self.model.visual_model.directly_add_no_mem_embed:
|
179 |
+
vision_feats[-1] = vision_feats[-1] + self.model.visual_model.no_mem_embed
|
180 |
+
feats = [
|
181 |
+
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
|
182 |
+
for feat, feat_size in zip(vision_feats[::-1], self.model._bb_feat_sizes[::-1])
|
183 |
+
][::-1]
|
184 |
+
features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
185 |
+
return features
|
186 |
+
|
187 |
+
def forward(self, **kwargs):
|
188 |
+
return super().forward(**kwargs) if "past_key_values" in kwargs else self.model_forward(**kwargs)
|
189 |
+
|
190 |
+
def model_forward(
|
191 |
+
self,
|
192 |
+
inference: bool = False,
|
193 |
+
**kwargs,
|
194 |
+
):
|
195 |
+
samples = kwargs.get('samples', None)
|
196 |
+
if samples and samples['data_type'][0] == 'grounding':
|
197 |
+
kwargs['output_hidden_states'] = True
|
198 |
+
torch.cuda.empty_cache()
|
199 |
+
outputs = super().forward(**kwargs)
|
200 |
+
|
201 |
+
if inference:
|
202 |
+
assert len(samples['text_input']) == 1 and len(samples['image'][0]) == 1 #single image and single query
|
203 |
+
output_hidden_states = [outputs.hidden_states]
|
204 |
+
outputs = None
|
205 |
+
else:
|
206 |
+
output_hidden_states = outputs.hidden_states
|
207 |
+
|
208 |
+
hidden_states = []
|
209 |
+
assert len(self.model.text_hidden_fcs) == 1
|
210 |
+
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states[-1]))
|
211 |
+
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
212 |
+
|
213 |
+
seg_token_mask = outputs.seg_token_mask
|
214 |
+
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
|
215 |
+
image_g_batch = torch.cat(samples['image_g'][0],dim = 0)
|
216 |
+
image_g_features = self.get_visual_embs(image_g_batch)
|
217 |
+
ori_hw = samples['ori_hw'][0]
|
218 |
+
all_pred_masks = []
|
219 |
+
for i in range(len(pred_embeddings)): #(bs,)
|
220 |
+
if (pred_embeddings[i].numel()== 0):
|
221 |
+
pred_masks.append([])
|
222 |
+
continue
|
223 |
+
(sparse_embeddings, dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
|
224 |
+
points=None,
|
225 |
+
boxes=None,
|
226 |
+
masks=None,
|
227 |
+
text_embeds=pred_embeddings[i].unsqueeze(1),
|
228 |
+
)
|
229 |
+
batch_mode = (pred_embeddings[i].shape[0]>1)
|
230 |
+
high_res_features = [
|
231 |
+
feat_level[i].unsqueeze(0)
|
232 |
+
for feat_level in image_g_features["high_res_feats"]
|
233 |
+
]
|
234 |
+
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
235 |
+
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
|
236 |
+
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
|
237 |
+
image_embeddings=image_g_embeds,
|
238 |
+
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
|
239 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
240 |
+
dense_prompt_embeddings=dense_embeddings,
|
241 |
+
repeat_image=batch_mode,
|
242 |
+
multimask_output=False,
|
243 |
+
high_res_features=high_res_features,
|
244 |
+
)
|
245 |
+
pred_masks = self.model._transform.postprocess_masks(
|
246 |
+
low_res_masks,
|
247 |
+
ori_hw[i],
|
248 |
+
)
|
249 |
+
|
250 |
+
# pred_masks = pred_masks.squeeze(0)
|
251 |
+
# all_pred_masks.append(pred_masks)
|
252 |
+
all_pred_masks.append(pred_masks[:, 0])
|
253 |
+
|
254 |
+
|
255 |
+
model_output = outputs
|
256 |
+
gt_masks = samples['masks'][0]
|
257 |
+
pred_masks = all_pred_masks
|
258 |
+
|
259 |
+
if inference:
|
260 |
+
return {
|
261 |
+
"pred_masks": pred_masks,
|
262 |
+
"gt_masks": gt_masks,
|
263 |
+
}
|
264 |
+
|
265 |
+
ce_loss = model_output.loss
|
266 |
+
ce_loss = ce_loss * self.ce_loss_weight
|
267 |
+
mask_bce_loss = 0
|
268 |
+
mask_dice_loss = 0
|
269 |
+
num_masks = 0
|
270 |
+
|
271 |
+
for batch_idx in range(len(pred_masks)): # for every image
|
272 |
+
cur_gt_masks = torch.stack(
|
273 |
+
[
|
274 |
+
torch.from_numpy(gt_mask).to(dtype=pred_masks[batch_idx].dtype, device=pred_masks[batch_idx].device)
|
275 |
+
for gt_mask in gt_masks[batch_idx]
|
276 |
+
],
|
277 |
+
dim=0
|
278 |
+
) # expected (bs,H,W)
|
279 |
+
cur_pred_masks = pred_masks[batch_idx]
|
280 |
+
assert (
|
281 |
+
cur_gt_masks.shape[0] == cur_pred_masks.shape[0]
|
282 |
+
), "gt_masks.shape: {}, pred_masks.shape: {}".format(
|
283 |
+
cur_gt_masks.shape, cur_pred_masks.shape
|
284 |
+
)
|
285 |
+
mask_bce_loss += (
|
286 |
+
sigmoid_ce_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
|
287 |
+
* cur_gt_masks.shape[0]
|
288 |
+
)
|
289 |
+
mask_dice_loss += (
|
290 |
+
dice_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
|
291 |
+
* cur_gt_masks.shape[0]
|
292 |
+
)
|
293 |
+
num_masks += cur_gt_masks.shape[0]
|
294 |
+
|
295 |
+
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
|
296 |
+
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
|
297 |
+
mask_loss = mask_bce_loss + mask_dice_loss
|
298 |
+
|
299 |
+
loss = ce_loss + mask_loss
|
300 |
+
outputs = CausalLMOutputWithPast(
|
301 |
+
loss=loss,
|
302 |
+
logits=model_output.logits,
|
303 |
+
past_key_values=model_output.past_key_values,
|
304 |
+
hidden_states=output_hidden_states,
|
305 |
+
attentions=model_output.attentions,
|
306 |
+
)
|
307 |
+
outputs.ce_loss = ce_loss
|
308 |
+
outputs.mask_bce_loss = mask_bce_loss
|
309 |
+
outputs.mask_dice_loss = mask_dice_loss
|
310 |
+
outputs.mask_loss = mask_loss
|
311 |
+
else:
|
312 |
+
outputs = super().forward(**kwargs)
|
313 |
+
return outputs
|
314 |
+
|
315 |
+
def evaluate(
|
316 |
+
self,
|
317 |
+
tokenizer,
|
318 |
+
query: str,
|
319 |
+
images: List[Tuple[str, str]] = [],
|
320 |
+
hd_num: int = 9,
|
321 |
+
history: List[Tuple[str, str]] = [],
|
322 |
+
max_new_tokens: int = 1024,
|
323 |
+
**kwargs,
|
324 |
+
):
|
325 |
+
with torch.no_grad():
|
326 |
+
inputs, im_mask, _ = self.interleav_wrap_chat(query, images, history=history, hd_num=hd_num)
|
327 |
+
print(im_mask.sum().item())
|
328 |
+
inputs = {
|
329 |
+
k: v.to(self.device)
|
330 |
+
for k, v in inputs.items() if torch.is_tensor(v)
|
331 |
+
}
|
332 |
+
# print(len(inputs['inputs_embeds'][0]))
|
333 |
+
eos_token_id = [
|
334 |
+
tokenizer.eos_token_id,
|
335 |
+
#tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
|
336 |
+
]
|
337 |
+
all_pred_masks = []
|
338 |
+
outputs = self.generate(
|
339 |
+
**inputs,
|
340 |
+
max_new_tokens=max_new_tokens,
|
341 |
+
im_mask=im_mask,
|
342 |
+
input_ids = None,
|
343 |
+
streamer= None,
|
344 |
+
num_beams=1,
|
345 |
+
do_sample=False,
|
346 |
+
temperature=1.0,
|
347 |
+
top_p= 1.0,
|
348 |
+
top_k = 0,
|
349 |
+
eos_token_id=eos_token_id,
|
350 |
+
repetition_penalty=1.0,
|
351 |
+
infer_mode = 'base',
|
352 |
+
output_hidden_states=True,
|
353 |
+
return_dict_in_generate=True,
|
354 |
+
**kwargs,
|
355 |
+
)
|
356 |
+
output_ids = outputs['sequences']
|
357 |
+
response = tokenizer.decode(output_ids[0].cpu().tolist(), skip_special_tokens=True)
|
358 |
+
response = response.replace("[UNUSED_TOKEN_145]","")
|
359 |
+
history = history + [(query, response)]
|
360 |
+
if len(images)==1 and isinstance(images[0], str):
|
361 |
+
output_hidden_states = outputs.hidden_states[-1]
|
362 |
+
seg_token_mask = output_ids[:, 1:-1] == self.seg_token_idx
|
363 |
+
inputs_embeds_len = inputs['inputs_embeds'].size(1)
|
364 |
+
seg_token_mask = torch.cat(
|
365 |
+
[
|
366 |
+
torch.zeros((seg_token_mask.shape[0], inputs_embeds_len)).bool().cuda(),
|
367 |
+
seg_token_mask,
|
368 |
+
],
|
369 |
+
dim=1,
|
370 |
+
)
|
371 |
+
hidden_states = []
|
372 |
+
assert len(self.model.text_hidden_fcs) == 1
|
373 |
+
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
|
374 |
+
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
375 |
+
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
|
376 |
+
image_g_features, ori_hw = self.encode_g_img(images[0])
|
377 |
+
|
378 |
+
for i in range(len(pred_embeddings)):
|
379 |
+
if (pred_embeddings[i].numel()== 0):
|
380 |
+
all_pred_masks.append([])
|
381 |
+
continue
|
382 |
+
(sparse_embeddings,dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
|
383 |
+
points=None,
|
384 |
+
boxes=None,
|
385 |
+
masks=None,
|
386 |
+
text_embeds=pred_embeddings[i].unsqueeze(1),
|
387 |
+
)
|
388 |
+
batch_mode = (pred_embeddings[i].shape[0]>1)
|
389 |
+
high_res_features = [
|
390 |
+
feat_level[i].unsqueeze(0)
|
391 |
+
for feat_level in image_g_features["high_res_feats"]
|
392 |
+
]
|
393 |
+
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
394 |
+
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
|
395 |
+
|
396 |
+
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
|
397 |
+
image_embeddings=image_g_embeds,
|
398 |
+
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
|
399 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
400 |
+
dense_prompt_embeddings=dense_embeddings,
|
401 |
+
repeat_image=batch_mode,
|
402 |
+
multimask_output=False,
|
403 |
+
high_res_features=high_res_features,
|
404 |
+
)
|
405 |
+
pred_masks = self.model._transform.postprocess_masks(
|
406 |
+
low_res_masks,
|
407 |
+
ori_hw[i],
|
408 |
+
)
|
409 |
+
all_pred_masks.append(pred_masks[:, 0])
|
410 |
+
|
411 |
+
return response, all_pred_masks
|
pytorch_model.bin.index.json
CHANGED
@@ -2218,7 +2218,7 @@
|
|
2218 |
"model.visual_model.memory_attention.norm.weight": "pytorch_model-00003-of-00003.bin",
|
2219 |
"model.visual_model.memory_encoder.fuser.layers.0.dwconv.bias": "pytorch_model-00003-of-00003.bin",
|
2220 |
"model.visual_model.memory_encoder.fuser.layers.0.dwconv.weight": "pytorch_model-00003-of-00003.bin",
|
2221 |
-
"model.visual_model.memory_encoder.fuser.layers.0.
|
2222 |
"model.visual_model.memory_encoder.fuser.layers.0.norm.bias": "pytorch_model-00003-of-00003.bin",
|
2223 |
"model.visual_model.memory_encoder.fuser.layers.0.norm.weight": "pytorch_model-00003-of-00003.bin",
|
2224 |
"model.visual_model.memory_encoder.fuser.layers.0.pwconv1.bias": "pytorch_model-00003-of-00003.bin",
|
@@ -2227,7 +2227,7 @@
|
|
2227 |
"model.visual_model.memory_encoder.fuser.layers.0.pwconv2.weight": "pytorch_model-00003-of-00003.bin",
|
2228 |
"model.visual_model.memory_encoder.fuser.layers.1.dwconv.bias": "pytorch_model-00003-of-00003.bin",
|
2229 |
"model.visual_model.memory_encoder.fuser.layers.1.dwconv.weight": "pytorch_model-00003-of-00003.bin",
|
2230 |
-
"model.visual_model.memory_encoder.fuser.layers.1.
|
2231 |
"model.visual_model.memory_encoder.fuser.layers.1.norm.bias": "pytorch_model-00003-of-00003.bin",
|
2232 |
"model.visual_model.memory_encoder.fuser.layers.1.norm.weight": "pytorch_model-00003-of-00003.bin",
|
2233 |
"model.visual_model.memory_encoder.fuser.layers.1.pwconv1.bias": "pytorch_model-00003-of-00003.bin",
|
|
|
2218 |
"model.visual_model.memory_attention.norm.weight": "pytorch_model-00003-of-00003.bin",
|
2219 |
"model.visual_model.memory_encoder.fuser.layers.0.dwconv.bias": "pytorch_model-00003-of-00003.bin",
|
2220 |
"model.visual_model.memory_encoder.fuser.layers.0.dwconv.weight": "pytorch_model-00003-of-00003.bin",
|
2221 |
+
"model.visual_model.memory_encoder.fuser.layers.0.weight": "pytorch_model-00003-of-00003.bin",
|
2222 |
"model.visual_model.memory_encoder.fuser.layers.0.norm.bias": "pytorch_model-00003-of-00003.bin",
|
2223 |
"model.visual_model.memory_encoder.fuser.layers.0.norm.weight": "pytorch_model-00003-of-00003.bin",
|
2224 |
"model.visual_model.memory_encoder.fuser.layers.0.pwconv1.bias": "pytorch_model-00003-of-00003.bin",
|
|
|
2227 |
"model.visual_model.memory_encoder.fuser.layers.0.pwconv2.weight": "pytorch_model-00003-of-00003.bin",
|
2228 |
"model.visual_model.memory_encoder.fuser.layers.1.dwconv.bias": "pytorch_model-00003-of-00003.bin",
|
2229 |
"model.visual_model.memory_encoder.fuser.layers.1.dwconv.weight": "pytorch_model-00003-of-00003.bin",
|
2230 |
+
"model.visual_model.memory_encoder.fuser.layers.1.weight": "pytorch_model-00003-of-00003.bin",
|
2231 |
"model.visual_model.memory_encoder.fuser.layers.1.norm.bias": "pytorch_model-00003-of-00003.bin",
|
2232 |
"model.visual_model.memory_encoder.fuser.layers.1.norm.weight": "pytorch_model-00003-of-00003.bin",
|
2233 |
"model.visual_model.memory_encoder.fuser.layers.1.pwconv1.bias": "pytorch_model-00003-of-00003.bin",
|