Delete geopix.py
Browse files
geopix.py
DELETED
@@ -1,410 +0,0 @@
|
|
1 |
-
from typing import List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import os
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
import torch.nn as nn
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
from PIL import Image
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11 |
-
from model.IXC.modeling_internlm_xcomposer2 import InternLMXComposer2ForCausalLM
|
12 |
-
from model.IXC.modeling_internlm2 import InternLM2Model
|
13 |
-
from model.sam2.build_sam import build_sam2_hf
|
14 |
-
from model.sam2.utils.transforms import SAM2Transforms
|
15 |
-
try:
|
16 |
-
from transformers.generation.streamers import BaseStreamer
|
17 |
-
except: # noqa # pylint: disable=bare-except
|
18 |
-
BaseStreamer = None
|
19 |
-
|
20 |
-
|
21 |
-
def dice_loss(
|
22 |
-
inputs: torch.Tensor,
|
23 |
-
targets: torch.Tensor,
|
24 |
-
num_masks: float,
|
25 |
-
scale=1000, # 100000.0,
|
26 |
-
eps=1e-6,
|
27 |
-
):
|
28 |
-
"""
|
29 |
-
Compute the DICE loss, similar to generalized IOU for masks
|
30 |
-
Args:
|
31 |
-
inputs: A float tensor of arbitrary shape.
|
32 |
-
The predictions for each example.
|
33 |
-
targets: A float tensor with the same shape as inputs. Stores the binary
|
34 |
-
classification label for each element in inputs
|
35 |
-
(0 for the negative class and 1 for the positive class).
|
36 |
-
"""
|
37 |
-
inputs = inputs.sigmoid()
|
38 |
-
inputs = inputs.flatten(1, 2)
|
39 |
-
targets = targets.flatten(1, 2)
|
40 |
-
numerator = 2 * (inputs / scale * targets).sum(-1)
|
41 |
-
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
|
42 |
-
loss = 1 - (numerator + eps) / (denominator + eps)
|
43 |
-
loss = loss.sum() / (num_masks + 1e-8)
|
44 |
-
return loss
|
45 |
-
|
46 |
-
|
47 |
-
def sigmoid_ce_loss(
|
48 |
-
inputs: torch.Tensor,
|
49 |
-
targets: torch.Tensor,
|
50 |
-
num_masks: float,
|
51 |
-
):
|
52 |
-
"""
|
53 |
-
Args:
|
54 |
-
inputs: A float tensor of arbitrary shape.
|
55 |
-
The predictions for each example.
|
56 |
-
targets: A float tensor with the same shape as inputs. Stores the binary
|
57 |
-
classification label for each element in inputs
|
58 |
-
(0 for the negative class and 1 for the positive class).
|
59 |
-
Returns:
|
60 |
-
Loss tensor
|
61 |
-
"""
|
62 |
-
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
63 |
-
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
|
64 |
-
return loss
|
65 |
-
|
66 |
-
|
67 |
-
class GeoPixMetaModel:
|
68 |
-
def __init__(
|
69 |
-
self,
|
70 |
-
config,
|
71 |
-
**kwargs,
|
72 |
-
):
|
73 |
-
super(GeoPixMetaModel, self).__init__(config)
|
74 |
-
self.config = config
|
75 |
-
self.config.train_mask_decoder = getattr(self.config, "train_mask_decoder", kwargs.get("train_mask_decoder", False))
|
76 |
-
self.config.out_dim = getattr(self.config, "out_dim", kwargs.get("out_dim", 256))
|
77 |
-
self.vision_pretrained = kwargs.get("vision_pretrained", None)
|
78 |
-
self.initialize_geopix_modules(self.config)
|
79 |
-
|
80 |
-
def initialize_geopix_modules(self, config):
|
81 |
-
# grounding vision model
|
82 |
-
self.visual_model = build_sam2_hf(self.vision_pretrained)
|
83 |
-
|
84 |
-
self._transform = SAM2Transforms(
|
85 |
-
resolution=self.visual_model.image_size,
|
86 |
-
mask_threshold=0.0,
|
87 |
-
max_hole_area=0.0,
|
88 |
-
max_sprinkle_area=0.0,
|
89 |
-
)
|
90 |
-
# Spatial dim for backbone feature maps
|
91 |
-
self._bb_feat_sizes = [
|
92 |
-
(256, 256),
|
93 |
-
(128, 128),
|
94 |
-
(64, 64),
|
95 |
-
]
|
96 |
-
for param in self.visual_model.parameters():
|
97 |
-
param.requires_grad = False
|
98 |
-
if config.train_mask_decoder:
|
99 |
-
self.visual_model.sam_mask_decoder.train()
|
100 |
-
for param in self.visual_model.sam_mask_decoder.parameters():
|
101 |
-
param.requires_grad = True
|
102 |
-
|
103 |
-
# text projection layer
|
104 |
-
in_dim = config.hidden_size
|
105 |
-
out_dim = config.out_dim
|
106 |
-
text_projection_layers = [
|
107 |
-
nn.Linear(in_dim, in_dim),
|
108 |
-
nn.ReLU(inplace=True),
|
109 |
-
nn.Linear(in_dim, out_dim),
|
110 |
-
nn.Dropout(0.0),
|
111 |
-
]
|
112 |
-
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_projection_layers)])
|
113 |
-
self.text_hidden_fcs.train()
|
114 |
-
for param in self.text_hidden_fcs.parameters():
|
115 |
-
param.requires_grad = True
|
116 |
-
|
117 |
-
|
118 |
-
class GeoPixModel(GeoPixMetaModel, InternLM2Model):
|
119 |
-
def __init__(
|
120 |
-
self,
|
121 |
-
config,
|
122 |
-
**kwargs,
|
123 |
-
):
|
124 |
-
super(GeoPixModel, self).__init__(config, **kwargs)
|
125 |
-
self.config.use_cache = False
|
126 |
-
|
127 |
-
|
128 |
-
class GeoPixForCausalLM(InternLMXComposer2ForCausalLM):
|
129 |
-
def __init__(self,config,**kwargs,):
|
130 |
-
|
131 |
-
self.ce_loss_weight = kwargs.pop("ce_loss_weight", None)
|
132 |
-
self.dice_loss_weight = kwargs.pop("dice_loss_weight", None)
|
133 |
-
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
|
134 |
-
self.seg_token_idx = kwargs.pop("seg_token_idx")
|
135 |
-
|
136 |
-
super().__init__(config)
|
137 |
-
self.model = GeoPixModel(config, **kwargs)
|
138 |
-
self.vocab_size = config.vocab_size
|
139 |
-
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
140 |
-
self.post_init()
|
141 |
-
|
142 |
-
def encode_g_img(self, image):
|
143 |
-
"""
|
144 |
-
Calculates the image embeddings for the provided image
|
145 |
-
Arguments:
|
146 |
-
image (np.ndarray or str)
|
147 |
-
"""
|
148 |
-
if image is None:
|
149 |
-
return None
|
150 |
-
if isinstance(image, str):
|
151 |
-
_, ext = os.path.splitext(image)
|
152 |
-
if ext.lower() in {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'}:
|
153 |
-
image = Image.open(image)
|
154 |
-
w, h = image.size
|
155 |
-
_orig_hw = [(h, w)]
|
156 |
-
else:
|
157 |
-
print ('Unknow input format', image)
|
158 |
-
return None
|
159 |
-
else:
|
160 |
-
assert isinstance(image, torch.Tensor)
|
161 |
-
_orig_hw = [image.shape[:2]]
|
162 |
-
image = self.model._transform(image)
|
163 |
-
image = image[None, ...].to(self.device)
|
164 |
-
assert ( len(image.shape) == 4 and image.shape[1] == 3), f"image must be of size 1x3xHxW, got {image.shape}"
|
165 |
-
features = self.get_visual_embs(image)
|
166 |
-
return features,_orig_hw
|
167 |
-
|
168 |
-
def get_visual_embs(self, img_batch: torch.FloatTensor):
|
169 |
-
with torch.no_grad():
|
170 |
-
torch.cuda.empty_cache()
|
171 |
-
img_batch = img_batch.to(self.device)
|
172 |
-
batch_size = img_batch.shape[0]
|
173 |
-
assert (
|
174 |
-
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
|
175 |
-
), f"grounding_img_batch must be of size Bx3xHxW, got {img_batch.shape}"
|
176 |
-
backbone_out = self.model.visual_model.forward_image(img_batch)
|
177 |
-
_, vision_feats, _, _ = self.model.visual_model._prepare_backbone_features(backbone_out)
|
178 |
-
if self.model.visual_model.directly_add_no_mem_embed:
|
179 |
-
vision_feats[-1] = vision_feats[-1] + self.model.visual_model.no_mem_embed
|
180 |
-
feats = [
|
181 |
-
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
|
182 |
-
for feat, feat_size in zip(vision_feats[::-1], self.model._bb_feat_sizes[::-1])
|
183 |
-
][::-1]
|
184 |
-
features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
185 |
-
return features
|
186 |
-
|
187 |
-
def forward(self, **kwargs):
|
188 |
-
return super().forward(**kwargs) if "past_key_values" in kwargs else self.model_forward(**kwargs)
|
189 |
-
|
190 |
-
def model_forward(
|
191 |
-
self,
|
192 |
-
inference: bool = False,
|
193 |
-
**kwargs,
|
194 |
-
):
|
195 |
-
samples = kwargs.get('samples', None)
|
196 |
-
if samples and samples['data_type'][0] == 'grounding':
|
197 |
-
kwargs['output_hidden_states'] = True
|
198 |
-
torch.cuda.empty_cache()
|
199 |
-
outputs = super().forward(**kwargs)
|
200 |
-
|
201 |
-
if inference:
|
202 |
-
assert len(samples['text_input']) == 1 and len(samples['image'][0]) == 1 #single image and single query
|
203 |
-
output_hidden_states = [outputs.hidden_states]
|
204 |
-
outputs = None
|
205 |
-
else:
|
206 |
-
output_hidden_states = outputs.hidden_states
|
207 |
-
|
208 |
-
hidden_states = []
|
209 |
-
assert len(self.model.text_hidden_fcs) == 1
|
210 |
-
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states[-1]))
|
211 |
-
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
212 |
-
|
213 |
-
seg_token_mask = outputs.seg_token_mask
|
214 |
-
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
|
215 |
-
image_g_batch = torch.cat(samples['image_g'][0],dim = 0)
|
216 |
-
image_g_features = self.get_visual_embs(image_g_batch)
|
217 |
-
ori_hw = samples['ori_hw'][0]
|
218 |
-
all_pred_masks = []
|
219 |
-
for i in range(len(pred_embeddings)): #(bs,)
|
220 |
-
if (pred_embeddings[i].numel()== 0):
|
221 |
-
pred_masks.append([])
|
222 |
-
continue
|
223 |
-
(sparse_embeddings, dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
|
224 |
-
points=None,
|
225 |
-
boxes=None,
|
226 |
-
masks=None,
|
227 |
-
text_embeds=pred_embeddings[i].unsqueeze(1),
|
228 |
-
)
|
229 |
-
batch_mode = (pred_embeddings[i].shape[0]>1)
|
230 |
-
high_res_features = [
|
231 |
-
feat_level[i].unsqueeze(0)
|
232 |
-
for feat_level in image_g_features["high_res_feats"]
|
233 |
-
]
|
234 |
-
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
235 |
-
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
|
236 |
-
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
|
237 |
-
image_embeddings=image_g_embeds,
|
238 |
-
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
|
239 |
-
sparse_prompt_embeddings=sparse_embeddings,
|
240 |
-
dense_prompt_embeddings=dense_embeddings,
|
241 |
-
repeat_image=batch_mode,
|
242 |
-
multimask_output=False,
|
243 |
-
high_res_features=high_res_features,
|
244 |
-
)
|
245 |
-
pred_masks = self.model._transform.postprocess_masks(
|
246 |
-
low_res_masks,
|
247 |
-
ori_hw[i],
|
248 |
-
)
|
249 |
-
|
250 |
-
# pred_masks = pred_masks.squeeze(0)
|
251 |
-
# all_pred_masks.append(pred_masks)
|
252 |
-
all_pred_masks.append(pred_masks[:, 0])
|
253 |
-
|
254 |
-
|
255 |
-
model_output = outputs
|
256 |
-
gt_masks = samples['masks'][0]
|
257 |
-
pred_masks = all_pred_masks
|
258 |
-
|
259 |
-
if inference:
|
260 |
-
return {
|
261 |
-
"pred_masks": pred_masks,
|
262 |
-
"gt_masks": gt_masks,
|
263 |
-
}
|
264 |
-
|
265 |
-
ce_loss = model_output.loss
|
266 |
-
ce_loss = ce_loss * self.ce_loss_weight
|
267 |
-
mask_bce_loss = 0
|
268 |
-
mask_dice_loss = 0
|
269 |
-
num_masks = 0
|
270 |
-
|
271 |
-
for batch_idx in range(len(pred_masks)): # for every image
|
272 |
-
cur_gt_masks = torch.stack(
|
273 |
-
[
|
274 |
-
torch.from_numpy(gt_mask).to(dtype=pred_masks[batch_idx].dtype, device=pred_masks[batch_idx].device)
|
275 |
-
for gt_mask in gt_masks[batch_idx]
|
276 |
-
],
|
277 |
-
dim=0
|
278 |
-
) # expected (bs,H,W)
|
279 |
-
cur_pred_masks = pred_masks[batch_idx]
|
280 |
-
assert (
|
281 |
-
cur_gt_masks.shape[0] == cur_pred_masks.shape[0]
|
282 |
-
), "gt_masks.shape: {}, pred_masks.shape: {}".format(
|
283 |
-
cur_gt_masks.shape, cur_pred_masks.shape
|
284 |
-
)
|
285 |
-
mask_bce_loss += (
|
286 |
-
sigmoid_ce_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
|
287 |
-
* cur_gt_masks.shape[0]
|
288 |
-
)
|
289 |
-
mask_dice_loss += (
|
290 |
-
dice_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
|
291 |
-
* cur_gt_masks.shape[0]
|
292 |
-
)
|
293 |
-
num_masks += cur_gt_masks.shape[0]
|
294 |
-
|
295 |
-
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
|
296 |
-
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
|
297 |
-
mask_loss = mask_bce_loss + mask_dice_loss
|
298 |
-
|
299 |
-
loss = ce_loss + mask_loss
|
300 |
-
outputs = CausalLMOutputWithPast(
|
301 |
-
loss=loss,
|
302 |
-
logits=model_output.logits,
|
303 |
-
past_key_values=model_output.past_key_values,
|
304 |
-
hidden_states=output_hidden_states,
|
305 |
-
attentions=model_output.attentions,
|
306 |
-
)
|
307 |
-
outputs.ce_loss = ce_loss
|
308 |
-
outputs.mask_bce_loss = mask_bce_loss
|
309 |
-
outputs.mask_dice_loss = mask_dice_loss
|
310 |
-
outputs.mask_loss = mask_loss
|
311 |
-
else:
|
312 |
-
outputs = super().forward(**kwargs)
|
313 |
-
return outputs
|
314 |
-
|
315 |
-
def evaluate(
|
316 |
-
self,
|
317 |
-
tokenizer,
|
318 |
-
query: str,
|
319 |
-
images: List[Tuple[str, str]] = [],
|
320 |
-
hd_num: int = 9,
|
321 |
-
history: List[Tuple[str, str]] = [],
|
322 |
-
max_new_tokens: int = 1024,
|
323 |
-
**kwargs,
|
324 |
-
):
|
325 |
-
with torch.no_grad():
|
326 |
-
inputs, im_mask, _ = self.interleav_wrap_chat(query, images, history=history, hd_num=hd_num)
|
327 |
-
inputs = {
|
328 |
-
k: v.to(self.device)
|
329 |
-
for k, v in inputs.items() if torch.is_tensor(v)
|
330 |
-
}
|
331 |
-
# print(len(inputs['inputs_embeds'][0]))
|
332 |
-
eos_token_id = [
|
333 |
-
tokenizer.eos_token_id,
|
334 |
-
#tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
|
335 |
-
]
|
336 |
-
all_pred_masks = []
|
337 |
-
outputs = self.generate(
|
338 |
-
**inputs,
|
339 |
-
max_new_tokens=max_new_tokens,
|
340 |
-
im_mask=im_mask,
|
341 |
-
input_ids = None,
|
342 |
-
streamer= None,
|
343 |
-
num_beams=1,
|
344 |
-
do_sample=False,
|
345 |
-
temperature=1.0,
|
346 |
-
top_p= 1.0,
|
347 |
-
top_k = 0,
|
348 |
-
eos_token_id=eos_token_id,
|
349 |
-
repetition_penalty=1.0,
|
350 |
-
infer_mode = 'base',
|
351 |
-
output_hidden_states=True,
|
352 |
-
return_dict_in_generate=True,
|
353 |
-
**kwargs,
|
354 |
-
)
|
355 |
-
output_ids = outputs['sequences']
|
356 |
-
response = tokenizer.decode(output_ids[0].cpu().tolist(), skip_special_tokens=True)
|
357 |
-
response = response.replace("[UNUSED_TOKEN_145]","")
|
358 |
-
history = history + [(query, response)]
|
359 |
-
if len(images)==1 and isinstance(images[0], str):
|
360 |
-
output_hidden_states = outputs.hidden_states[-1]
|
361 |
-
seg_token_mask = output_ids[:, 1:-1] == self.seg_token_idx
|
362 |
-
inputs_embeds_len = inputs['inputs_embeds'].size(1)
|
363 |
-
seg_token_mask = torch.cat(
|
364 |
-
[
|
365 |
-
torch.zeros((seg_token_mask.shape[0], inputs_embeds_len)).bool().cuda(),
|
366 |
-
seg_token_mask,
|
367 |
-
],
|
368 |
-
dim=1,
|
369 |
-
)
|
370 |
-
hidden_states = []
|
371 |
-
assert len(self.model.text_hidden_fcs) == 1
|
372 |
-
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
|
373 |
-
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
374 |
-
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
|
375 |
-
image_g_features, ori_hw = self.encode_g_img(images[0])
|
376 |
-
|
377 |
-
for i in range(len(pred_embeddings)):
|
378 |
-
if (pred_embeddings[i].numel()== 0):
|
379 |
-
all_pred_masks.append([])
|
380 |
-
continue
|
381 |
-
(sparse_embeddings,dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
|
382 |
-
points=None,
|
383 |
-
boxes=None,
|
384 |
-
masks=None,
|
385 |
-
text_embeds=pred_embeddings[i].unsqueeze(1),
|
386 |
-
)
|
387 |
-
batch_mode = (pred_embeddings[i].shape[0]>1)
|
388 |
-
high_res_features = [
|
389 |
-
feat_level[i].unsqueeze(0)
|
390 |
-
for feat_level in image_g_features["high_res_feats"]
|
391 |
-
]
|
392 |
-
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
393 |
-
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
|
394 |
-
|
395 |
-
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
|
396 |
-
image_embeddings=image_g_embeds,
|
397 |
-
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
|
398 |
-
sparse_prompt_embeddings=sparse_embeddings,
|
399 |
-
dense_prompt_embeddings=dense_embeddings,
|
400 |
-
repeat_image=batch_mode,
|
401 |
-
multimask_output=False,
|
402 |
-
high_res_features=high_res_features,
|
403 |
-
)
|
404 |
-
pred_masks = self.model._transform.postprocess_masks(
|
405 |
-
low_res_masks,
|
406 |
-
ori_hw[i],
|
407 |
-
)
|
408 |
-
all_pred_masks.append(pred_masks[:, 0])
|
409 |
-
|
410 |
-
return response, all_pred_masks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|