PyTorch
English
internlm2
code
custom_code
File size: 16,960 Bytes
c4bccce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from typing import List, Optional, Tuple, Union

import os
import torch
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
from PIL import Image
import torch.nn.functional as F
from transformers.modeling_outputs import CausalLMOutputWithPast
from model.IXC.modeling_internlm_xcomposer2 import InternLMXComposer2ForCausalLM
from model.IXC.modeling_internlm2 import InternLM2Model
from model.sam2.build_sam import build_sam2_hf
from model.sam2.utils.transforms import SAM2Transforms
try:
    from transformers.generation.streamers import BaseStreamer
except:  # noqa # pylint: disable=bare-except
    BaseStreamer = None


def dice_loss(
    inputs: torch.Tensor,
    targets: torch.Tensor,
    num_masks: float,
    scale=1000,  # 100000.0,
    eps=1e-6,
):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1, 2)
    targets = targets.flatten(1, 2)
    numerator = 2 * (inputs / scale * targets).sum(-1)
    denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
    loss = 1 - (numerator + eps) / (denominator + eps)
    loss = loss.sum() / (num_masks + 1e-8)
    return loss


def sigmoid_ce_loss(
    inputs: torch.Tensor,
    targets: torch.Tensor,
    num_masks: float,
):
    """
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    Returns:
        Loss tensor
    """
    loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
    return loss


class GeoPixMetaModel:
    def __init__(
        self,
        config,
        **kwargs,
    ):
        super(GeoPixMetaModel, self).__init__(config)
        self.config = config
        self.config.train_mask_decoder = getattr(self.config, "train_mask_decoder", kwargs.get("train_mask_decoder", False))
        self.config.out_dim = getattr(self.config, "out_dim", kwargs.get("out_dim", 256))
        self.vision_pretrained = kwargs.get("vision_pretrained", None)
        self.initialize_geopix_modules(self.config)

    def initialize_geopix_modules(self, config):
        # grounding vision model
        self.visual_model = build_sam2_hf(self.vision_pretrained)

        self._transform = SAM2Transforms(
                    resolution=self.visual_model.image_size,
                    mask_threshold=0.0,
                    max_hole_area=0.0,
                    max_sprinkle_area=0.0,
                )
        # Spatial dim for backbone feature maps
        self._bb_feat_sizes = [
            (256, 256),
            (128, 128),
            (64, 64),
        ]
        for param in self.visual_model.parameters():
            param.requires_grad = False
        if config.train_mask_decoder:
            self.visual_model.sam_mask_decoder.train()
            for param in self.visual_model.sam_mask_decoder.parameters():
                param.requires_grad = True

        # text projection layer
        in_dim = config.hidden_size 
        out_dim = config.out_dim    
        text_projection_layers = [
            nn.Linear(in_dim, in_dim),
            nn.ReLU(inplace=True),
            nn.Linear(in_dim, out_dim),
            nn.Dropout(0.0),
        ]
        self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_projection_layers)])
        self.text_hidden_fcs.train()
        for param in self.text_hidden_fcs.parameters():
            param.requires_grad = True


class GeoPixModel(GeoPixMetaModel, InternLM2Model):
    def __init__(
        self,
        config,
        **kwargs,
    ):
        super(GeoPixModel, self).__init__(config, **kwargs)
        self.config.use_cache = False


class GeoPixForCausalLM(InternLMXComposer2ForCausalLM):
    def __init__(self,config,**kwargs,):
        
        self.ce_loss_weight = kwargs.pop("ce_loss_weight", None)
        self.dice_loss_weight = kwargs.pop("dice_loss_weight", None)
        self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
        self.seg_token_idx = kwargs.pop("seg_token_idx")

        super().__init__(config)
        self.model = GeoPixModel(config, **kwargs)
        self.vocab_size = config.vocab_size
        self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

    def encode_g_img(self, image):
        """
        Calculates the image embeddings for the provided image
        Arguments:
          image (np.ndarray or str)
        """
        if image is None:
            return None
        if isinstance(image, str):
            _, ext = os.path.splitext(image)
            if ext.lower() in {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'}:
                image = Image.open(image)
                w, h = image.size
                _orig_hw = [(h, w)] 
            else:
                print ('Unknow input format', image)
                return None
        else:
            assert isinstance(image, torch.Tensor)
            _orig_hw = [image.shape[:2]]
        image = self.model._transform(image)
        image = image[None, ...].to(self.device)
        assert ( len(image.shape) == 4 and image.shape[1] == 3), f"image must be of size 1x3xHxW, got {image.shape}"
        features = self.get_visual_embs(image)   
        return features,_orig_hw

    def get_visual_embs(self, img_batch: torch.FloatTensor):
        with torch.no_grad():
            torch.cuda.empty_cache()
            img_batch = img_batch.to(self.device)
            batch_size = img_batch.shape[0]
            assert (
                len(img_batch.shape) == 4 and img_batch.shape[1] == 3
            ), f"grounding_img_batch must be of size Bx3xHxW, got {img_batch.shape}"
            backbone_out = self.model.visual_model.forward_image(img_batch)
            _, vision_feats, _, _ = self.model.visual_model._prepare_backbone_features(backbone_out)
            if self.model.visual_model.directly_add_no_mem_embed:
                vision_feats[-1] = vision_feats[-1] + self.model.visual_model.no_mem_embed
            feats = [
                feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
                for feat, feat_size in zip(vision_feats[::-1], self.model._bb_feat_sizes[::-1])
            ][::-1]
            features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
        return features
    
    def forward(self, **kwargs):
        return super().forward(**kwargs) if "past_key_values" in kwargs else self.model_forward(**kwargs)
    
    def model_forward(
            self,
            inference: bool = False,
            **kwargs,
    ):
        samples = kwargs.get('samples', None)
        if samples and samples['data_type'][0] == 'grounding': 
            kwargs['output_hidden_states'] = True
            torch.cuda.empty_cache()
            outputs = super().forward(**kwargs)

            if inference:
                assert len(samples['text_input']) == 1 and len(samples['image'][0]) == 1 #single image and single query
                output_hidden_states = [outputs.hidden_states]
                outputs = None
            else:
                output_hidden_states = outputs.hidden_states

            hidden_states = []
            assert len(self.model.text_hidden_fcs) == 1
            hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states[-1]))
            last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)

            seg_token_mask = outputs.seg_token_mask
            pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
            image_g_batch = torch.cat(samples['image_g'][0],dim = 0)
            image_g_features = self.get_visual_embs(image_g_batch)
            ori_hw = samples['ori_hw'][0]
            all_pred_masks = []
            for i in range(len(pred_embeddings)): #(bs,)
                if (pred_embeddings[i].numel()== 0):
                    pred_masks.append([])
                    continue
                (sparse_embeddings, dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
                    points=None,
                    boxes=None,
                    masks=None,
                    text_embeds=pred_embeddings[i].unsqueeze(1),
                )
                batch_mode = (pred_embeddings[i].shape[0]>1)
                high_res_features = [
                    feat_level[i].unsqueeze(0)
                    for feat_level in image_g_features["high_res_feats"]
                ]
                sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
                image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
                low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
                    image_embeddings=image_g_embeds,
                    image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
                    sparse_prompt_embeddings=sparse_embeddings,
                    dense_prompt_embeddings=dense_embeddings,
                    repeat_image=batch_mode,
                    multimask_output=False,
                    high_res_features=high_res_features,
                )
                pred_masks = self.model._transform.postprocess_masks(
                    low_res_masks,
                    ori_hw[i],
                )

                # pred_masks = pred_masks.squeeze(0) 
                # all_pred_masks.append(pred_masks)
                all_pred_masks.append(pred_masks[:, 0])
                

            model_output = outputs
            gt_masks =  samples['masks'][0]
            pred_masks = all_pred_masks 

            if inference:
                return {
                    "pred_masks": pred_masks,
                    "gt_masks": gt_masks,
                }

            ce_loss = model_output.loss
            ce_loss = ce_loss * self.ce_loss_weight
            mask_bce_loss = 0
            mask_dice_loss = 0
            num_masks = 0

            for batch_idx in range(len(pred_masks)): # for every image
                cur_gt_masks = torch.stack(
                    [
                        torch.from_numpy(gt_mask).to(dtype=pred_masks[batch_idx].dtype, device=pred_masks[batch_idx].device)
                        for gt_mask in gt_masks[batch_idx]
                    ],
                    dim=0
                ) # expected (bs,H,W)
                cur_pred_masks = pred_masks[batch_idx]
                assert (
                    cur_gt_masks.shape[0] == cur_pred_masks.shape[0]
                ), "gt_masks.shape: {}, pred_masks.shape: {}".format(
                    cur_gt_masks.shape, cur_pred_masks.shape
                )
                mask_bce_loss += (
                    sigmoid_ce_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
                    * cur_gt_masks.shape[0]
                )
                mask_dice_loss += (
                    dice_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
                    * cur_gt_masks.shape[0]
                )
                num_masks += cur_gt_masks.shape[0] 

            mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
            mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
            mask_loss = mask_bce_loss + mask_dice_loss

            loss = ce_loss + mask_loss
            outputs = CausalLMOutputWithPast(
                loss=loss,
                logits=model_output.logits,
                past_key_values=model_output.past_key_values,
                hidden_states=output_hidden_states,
                attentions=model_output.attentions,
            )
            outputs.ce_loss = ce_loss
            outputs.mask_bce_loss = mask_bce_loss
            outputs.mask_dice_loss = mask_dice_loss
            outputs.mask_loss = mask_loss
        else: 
            outputs =  super().forward(**kwargs)
        return outputs

    def evaluate(
        self,
        tokenizer,
        query: str,
        images: List[Tuple[str, str]] = [],
        hd_num: int = 9,
        history: List[Tuple[str, str]] = [],
        max_new_tokens: int = 1024,
        **kwargs,
    ):
        with torch.no_grad():
            inputs, im_mask, _ = self.interleav_wrap_chat(query, images, history=history, hd_num=hd_num)        
            inputs = {
                k: v.to(self.device)
                for k, v in inputs.items() if torch.is_tensor(v)
            }
            # print(len(inputs['inputs_embeds'][0]))
            eos_token_id = [
                tokenizer.eos_token_id,
                #tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
            ]
            all_pred_masks = []
            outputs = self.generate(
                **inputs,
                max_new_tokens=max_new_tokens,
                im_mask=im_mask,
                input_ids = None,
                streamer= None,
                num_beams=1,
                do_sample=False,
                temperature=1.0,
                top_p= 1.0,
                top_k = 0,
                eos_token_id=eos_token_id,
                repetition_penalty=1.0,
                infer_mode = 'base',
                output_hidden_states=True,
                return_dict_in_generate=True,
                **kwargs,
            )
            output_ids = outputs['sequences']
            response = tokenizer.decode(output_ids[0].cpu().tolist(), skip_special_tokens=True)
            response = response.replace("[UNUSED_TOKEN_145]","")
            history = history + [(query, response)]
            if len(images)==1 and isinstance(images[0], str): 
                output_hidden_states = outputs.hidden_states[-1] 
                seg_token_mask = output_ids[:, 1:-1] == self.seg_token_idx
                inputs_embeds_len = inputs['inputs_embeds'].size(1)
                seg_token_mask = torch.cat(
                    [
                        torch.zeros((seg_token_mask.shape[0], inputs_embeds_len)).bool().cuda(),
                        seg_token_mask,
                    ],
                    dim=1,
                )
                hidden_states = []
                assert len(self.model.text_hidden_fcs) == 1
                hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
                last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
                pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
                image_g_features, ori_hw = self.encode_g_img(images[0]) 

                for i in range(len(pred_embeddings)):
                    if (pred_embeddings[i].numel()== 0):
                        all_pred_masks.append([])
                        continue
                    (sparse_embeddings,dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
                        points=None,
                        boxes=None,
                        masks=None,
                        text_embeds=pred_embeddings[i].unsqueeze(1),
                    )
                    batch_mode = (pred_embeddings[i].shape[0]>1)
                    high_res_features = [
                        feat_level[i].unsqueeze(0)
                        for feat_level in image_g_features["high_res_feats"]
                    ]
                    sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
                    image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)

                    low_res_masks, _, _ , _  = self.model.visual_model.sam_mask_decoder(
                        image_embeddings=image_g_embeds,
                        image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
                        sparse_prompt_embeddings=sparse_embeddings,
                        dense_prompt_embeddings=dense_embeddings,
                        repeat_image=batch_mode,
                        multimask_output=False,
                        high_res_features=high_res_features,
                    )
                    pred_masks = self.model._transform.postprocess_masks(
                        low_res_masks,
                        ori_hw[i],
                    )
                    all_pred_masks.append(pred_masks[:, 0])

        return response, all_pred_masks