Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- bn
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
pipeline_tag: token-classification
|
7 |
+
---
|
8 |
+
# Bangla-Person-Name-Extractor
|
9 |
+
This repository contains the implementation of a Bangla Person Name Extractor model which is able to extract Person name entities from a given sentence. We approached it as a token classification task i.e. tagging each token with either a Person's name or not. We leveraged the [BanglaBERT](http://https://github.com/csebuetnlp/banglabert) model for our task, finetuning it for a binary classification task using a custom-prepare dataset. We have deployed the model into huggingface for easier access and use case.
|
10 |
+
|
11 |
+
|
12 |
+
# Datasets
|
13 |
+
We used two datasets to train and evaluate our pipeline.
|
14 |
+
1. [Bengali-NER/annotated data at master · Rifat1493/Bengali-NER](http://https://github.com/Rifat1493/Bengali-NER/tree/master/annotated%20data)
|
15 |
+
2. [banglakit/bengali-ner-data](http://https://raw.githubusercontent.com/banglakit/bengali-ner-data/master/main.jsonl)
|
16 |
+
|
17 |
+
The annotation formats for both datasets were quite different, so we had to preprocess both of them before merging them. Please refer to [this notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/prepare-dataset.ipynb) for preparing the dataset as required.
|
18 |
+
|
19 |
+
# Training and Evaluation
|
20 |
+
We treated this problem as a token classification task.So it seemed perfect to finetune BanglaBERT model for our purpose. [BanglaBERT ](https://huggingface.co/csebuetnlp/banglabert)is an [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) discriminator model pretrained with the Replaced Token Detection (RTD) objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLP tasks in bengali.
|
21 |
+
We mainly finetuned two checkpoints of BanglaBERT.
|
22 |
+
1. [BanglaBERT](https://huggingface.co/csebuetnlp/banglabert)
|
23 |
+
2. [BanglaEERT small](https://huggingface.co/csebuetnlp/banglabert_small)
|
24 |
+
|
25 |
+
BanglaBERT performed better than BanglaBERT small ( 83% F1 score vs 79% F1 score on the test set) .
|
26 |
+
Please refer to [this notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/Training%20Notebook%20%3A%20Person%20Name%20Extractor%20using%20BanglaBERT.ipynb) to see the training process.
|
27 |
+
|
28 |
+
**Quantitative results**
|
29 |
+
Please refer to [this notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/Inference%20and%20Evaluation%20Notebook.ipynb) to see the evaluation process.
|
30 |
+
<br></br>
|
31 |
+

|
32 |
+
|
33 |
+
# How to use it?
|
34 |
+
[This Notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/Inference_template.ipynb) contains the required Inference Template on a sentence.
|
35 |
+
<br></br>
|
36 |
+
You can also directly infer using the following code snippet. Just change the sentence.
|
37 |
+
|
38 |
+
```
|
39 |
+
from transformers import AutoModelForPreTraining, AutoTokenizer,AutoModelForTokenClassification #!pip install transformers==4.30.2
|
40 |
+
from normalizer import normalize #pip install git+https://github.com/csebuetnlp/normalizer
|
41 |
+
import torch #pip install torch
|
42 |
+
import numpy as np #!pip install numpy==1.23.5
|
43 |
+
|
44 |
+
|
45 |
+
model = AutoModelForTokenClassification.from_pretrained("MBMMurad/BanglaBERT_Person_Name_Extractor")
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("MBMMurad/BanglaBERT_Person_Name_Extractor")
|
47 |
+
def inference_fn(sentence):
|
48 |
+
sentence = normalize(sentence)
|
49 |
+
tokens = tokenizer.tokenize(sentence)
|
50 |
+
inputs = tokenizer.encode(sentence,return_tensors="pt")
|
51 |
+
outputs = model(inputs).logits
|
52 |
+
predictions = torch.argmax(outputs[0],axis=1)[1:-1].numpy()
|
53 |
+
idxs = np.where(predictions==1)
|
54 |
+
|
55 |
+
return np.array(tokens)[idxs]
|
56 |
+
|
57 |
+
sentence = "আব্দুর রহিম নামের কাস্টমারকে একশ টাকা বাকি দিলাম।"
|
58 |
+
pred = inference_fn(sentence)
|
59 |
+
print(f"Input Sentence : {sentence}")
|
60 |
+
print(f"Person Name Entities : {pred}")
|
61 |
+
|
62 |
+
sentence = "ইঞ্জিনিয়ার্স ইনস্টিটিউশন চট্টগ্রামের সাবেক সভাপতি প্রকৌশলী দেলোয়ার হোসেন মজুমদার প্রথম আলোকে বলেন, 'সংকট নিরসনে বর্তমান খালগুলোকে পূর্ণ প্রবাহে ফিরিয়ে আনার পাশাপাশি নতুন তিনটি খাল খনন জরুরি।'"
|
63 |
+
pred = inference_fn(sentence)
|
64 |
+
print(f"Input Sentence : {sentence}")
|
65 |
+
print(f"Person Name Entities : {pred}")
|
66 |
+
|
67 |
+
|
68 |
+
sentence = "দলীয় নেতারা তাঁর বাসভবনে যেতে চাইলে আটক হন।"
|
69 |
+
pred = inference_fn(sentence)
|
70 |
+
print(f"Input Sentence : {sentence}")
|
71 |
+
print(f"Person Name Entities : {pred}")
|
72 |
+
```
|
73 |
+
|
74 |
+
**Output :**
|
75 |
+
```
|
76 |
+
Input Sentence : আব্দুর রহিম নামের কাস্টমারকে একশ টাকা বাকি দিলাম।
|
77 |
+
Person Name Entities : ['আব্দুর' 'রহিম']
|
78 |
+
|
79 |
+
|
80 |
+
Input Sentence : ইঞ্জিনিয়ার্স ইনস্টিটিউশন চট্টগ্রামের সাবেক সভাপতি প্রকৌশলী দেলোয়ার হোসেন মজুমদার প্রথম আলোকে বলেন, 'সংকট নিরসনে বর্তমান খালগুলোকে পূর্ণ প্রবাহে ফিরিয়ে আনার পাশাপাশি নতুন তিনটি খাল খনন জরুরি।'
|
81 |
+
Person Name Entities : ['দেলোয়ার' 'হোসেন' 'মজুমদার']
|
82 |
+
|
83 |
+
|
84 |
+
Input Sentence : দলীয় নেতারা তাঁর বাসভবনে যেতে চাইলে আটক হন।
|
85 |
+
Person Name Entities : []
|
86 |
+
```
|