v4.2
Browse files
pyai.py
CHANGED
@@ -1,131 +1,152 @@
|
|
1 |
-
import
|
2 |
-
import whisper
|
3 |
-
|
4 |
-
from torch import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
self.
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
import whisper
|
3 |
+
import numpy as np
|
4 |
+
from torch import nn
|
5 |
+
from torch import Tensor
|
6 |
+
from sklearn.tree import DecisionTreeRegressor
|
7 |
+
|
8 |
+
|
9 |
+
class PyAI:
|
10 |
+
def __init__(self, useGPU: bool):
|
11 |
+
if useGPU:
|
12 |
+
self.GPU = "cuda"
|
13 |
+
else:
|
14 |
+
self.GPU = "cpu"
|
15 |
+
|
16 |
+
def KNN(self, x, y, returnValues = 0):
|
17 |
+
distances = []
|
18 |
+
for axisX, axisY in zip(x, y):
|
19 |
+
distance = axisX - axisY
|
20 |
+
absDistance = np.absolute(distance)
|
21 |
+
distances.append(absDistance)
|
22 |
+
|
23 |
+
sortedDistances = []
|
24 |
+
checkDistance = min(distances, key = lambda x:np.absolute(x-i))
|
25 |
+
sortedDistances.append(checkDistance)
|
26 |
+
distances.remove(checkDistance)
|
27 |
+
|
28 |
+
if returnValues == 0:
|
29 |
+
return sortedDistances[0]
|
30 |
+
else:
|
31 |
+
return sortedDistances[0:returnValues-1]
|
32 |
+
|
33 |
+
def RNN(self, w: int, hx: int, useReLU: bool = False):
|
34 |
+
if useReLU:
|
35 |
+
RNN = nn.RNN(w, hx, 4, "relu").to(self.GPU)
|
36 |
+
else:
|
37 |
+
RNN = nn.RNN(w, hx, 4).to(self.GPU)
|
38 |
+
|
39 |
+
return self.Softmax(RNN)
|
40 |
+
|
41 |
+
def ReLU(self, x: list, *y: list, **u: list):
|
42 |
+
X, Y, U = [Tensor(x2) for x2 in x], [Tensor(y2) for y2 in y], [Tensor(u2) for u2 in u]
|
43 |
+
|
44 |
+
relu = nn.ReLU().to(self.GPU)
|
45 |
+
|
46 |
+
newX, newY, newU = [relu(x) for x in X], [relu(y) for y in Y], [relu(u) for u in U]
|
47 |
+
|
48 |
+
if newU is not None:
|
49 |
+
return newX, newY, newU
|
50 |
+
elif newY is not None:
|
51 |
+
return newX, newY
|
52 |
+
else:
|
53 |
+
return newX
|
54 |
+
|
55 |
+
def Softmax(self, x: list | Tensor):
|
56 |
+
if isinstance(x, list):
|
57 |
+
tensor = Tensor(x, 1).to(self.GPU)
|
58 |
+
soft = nn.Softmax(dim=1).to(self.GPU)(tensor)
|
59 |
+
return soft
|
60 |
+
else:
|
61 |
+
soft = nn.Softmax(dim=1).to(self.GPU)(x)
|
62 |
+
return soft
|
63 |
+
|
64 |
+
def decisionTree(self, trainX: list, trainY: list, words: list):
|
65 |
+
w = np.array([len(a) for a in words]).reshape(-1, 1)
|
66 |
+
tree = DecisionTreeRegressor()
|
67 |
+
tree.fit(trainX, trainY)
|
68 |
+
return tree.predict(w).tolist()
|
69 |
+
|
70 |
+
class Audio:
|
71 |
+
def __init__(self, audio: str):
|
72 |
+
self.model = whisper.load_model("base")
|
73 |
+
self.audio = audio
|
74 |
+
|
75 |
+
def generateTextFromAudio(self) -> str:
|
76 |
+
aud = whisper.load_audio(self.audio)
|
77 |
+
aud = whisper.pad_or_trim(aud)
|
78 |
+
|
79 |
+
self.mel = whisper.log_mel_spectrogram(aud).to(self.model.device)
|
80 |
+
|
81 |
+
self.model.detect_language(self.mel)
|
82 |
+
|
83 |
+
options = whisper.DecodingOptions()
|
84 |
+
result = whisper.decode(self.model, self.mel, options)
|
85 |
+
|
86 |
+
return result.text
|
87 |
+
|
88 |
+
def translateText(self, text: str, dataSet: str) -> str:
|
89 |
+
with open(dataSet, "r") as d:
|
90 |
+
data = d.read()
|
91 |
+
|
92 |
+
translation = text.translate(data)
|
93 |
+
|
94 |
+
return translation
|
95 |
+
|
96 |
+
def getLang(self):
|
97 |
+
i, lang = self.model.detect_language(self.mel)
|
98 |
+
return max(lang, key=lang.get)
|
99 |
+
|
100 |
+
class NLP:
|
101 |
+
def __init__(self, text: str):
|
102 |
+
self.text = text
|
103 |
+
self.sentences = text.split(".")
|
104 |
+
self.words = text.split(" ")
|
105 |
+
self._past = ["was", "had", "did"]
|
106 |
+
self._present = ["is", "has"]
|
107 |
+
self._future = ["will", "shall"]
|
108 |
+
|
109 |
+
def setTokensTo(self, letters: bool, *words: bool, **sentences: bool):
|
110 |
+
self.tokens = []
|
111 |
+
|
112 |
+
if letters:
|
113 |
+
tokens = iter(self.text)
|
114 |
+
for t in tokens:
|
115 |
+
self.tokens.append(t)
|
116 |
+
elif words:
|
117 |
+
for t in self.words:
|
118 |
+
self.tokens.append(t)
|
119 |
+
elif sentences:
|
120 |
+
for t in self.sentences:
|
121 |
+
self.tokens.append(t)
|
122 |
+
else:
|
123 |
+
self.tokens.append("ERROR")
|
124 |
+
|
125 |
+
def getTense(self):
|
126 |
+
self.past = False
|
127 |
+
self.present = False
|
128 |
+
self.future = False
|
129 |
+
|
130 |
+
if self.sentences in self._past:
|
131 |
+
self.past = True
|
132 |
+
elif self.sentences in self._present:
|
133 |
+
self.present = True
|
134 |
+
elif self.sentences in self._future:
|
135 |
+
self.future = True
|
136 |
+
else:
|
137 |
+
return "ERROR - Tense :: Not Enough Data"
|
138 |
+
|
139 |
+
return self.past, self.present, self.future
|
140 |
+
|
141 |
+
def getWords(self):
|
142 |
+
return self.words
|
143 |
+
|
144 |
+
def getSentences(self):
|
145 |
+
return self.sentences
|
146 |
+
|
147 |
+
def getTokens(self):
|
148 |
+
return self.tokens
|
149 |
+
|
150 |
+
def getPartOfSpeech(self, text: str):
|
151 |
+
POS = spacy.load("en_core_web_sm")
|
152 |
+
return POS(text)[0].tag_
|