Luca77's picture
first deep reinforcement learning experiment with the Lunar Lander! To the stars and beyond!
c2f8052
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fafc81ef670>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafc81ef700>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafc81ef790>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafc81ef820>",
"_build": "<function ActorCriticPolicy._build at 0x7fafc81ef8b0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fafc81ef940>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fafc81ef9d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafc81efa60>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fafc81efaf0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafc81efb80>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafc81efc10>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafc81efca0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fafc81e9960>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 10027008,
"_total_timesteps": 10000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1673877411164881137,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI35tb3vhEs9C4TAPjrzqr5vmxy9HwY8PgAAAAAAAAAAzQG4PY4ruD2lcza+AcSxvtftyz1wS9q8AAAAAAAAAACmS2k+OQSIPsb3575GLhK/xZ4RPhLxV74AAAAAAAAAAACjozzcvwk++zrGvGxzD79AujY9T4MJPQAAAAAAAAAAzRVrPlT2mD5oytW+T4cdv2AUSD5OtYW+AAAAAAAAAADgKVO+4iBoP50YsL6wVkm/kn0Bv0bMkr0AAAAAAAAAAKa88z39xxE/HoIhPdLrb7/wD0g+2BzBvQAAAAAAAAAAzdpIvHHNVLkj3fs89Iwvs2MekDsrcmyzAACAPwAAgD8zs+C8j9pTupO61TZP0eUxxnI0Owio/rUAAIA/AACAPzMi/rwDba8/bQP+vrWFu74xgBg88NdzvQAAAAAAAAAAzbhvPI96L7paj4S5CRtktPi3uLvZh504AACAPwAAgD9mCl29wmylP/McO74dmAm/k22+vSz/H74AAAAAAAAAADO5aj7+ASM/P2ArPRXvQb9/OsQ+BscFvgAAAAAAAAAAZsKhu8OJfrp+shO8yfKIPAcgmjqeG289AACAPwAAgD8a+zO9F8mtP30wNr/ed+u+ljSoPNs87rwAAAAAAAAAAGbRcT26Aro/piJZPgu8Wb5+Ljc9jXFWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0027007999999999477,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzsXf9kRnc0CUhpRSlIwBbJRLwIwBdJRHQMtci66jFhp1fZQoaAZoCWgPQwhdcAZ/v8RAQJSGlFKUaBVLa2gWR0DLXJTK5kLAdX2UKGgGaAloD0MI4NqJktCbc0CUhpRSlGgVS5loFkdAy1ydzvqkdnV9lChoBmgJaA9DCGZMwRonH3NAlIaUUpRoFUukaBZHQMtco+rdWQx1fZQoaAZoCWgPQwhJERlWMZpwQJSGlFKUaBVLp2gWR0DLXKbZpSJkdX2UKGgGaAloD0MIRIXq5mI7cUCUhpRSlGgVS5ZoFkdAy1yoOe8PF3V9lChoBmgJaA9DCJombD/ZT3FAlIaUUpRoFUusaBZHQMtcrEv0yxl1fZQoaAZoCWgPQwgD0ChdOixzQJSGlFKUaBVLuGgWR0DLXLMhzNlidX2UKGgGaAloD0MIUKbR5OIsdECUhpRSlGgVS8loFkdAy1zPgCwKSnV9lChoBmgJaA9DCNEEiljEHm9AlIaUUpRoFUucaBZHQMtcz21D0Dl1fZQoaAZoCWgPQwh1yqMboVNyQJSGlFKUaBVLiWgWR0DLXNM/nnuBdX2UKGgGaAloD0MITfT5KGNAc0CUhpRSlGgVS7loFkdAy1zWWqtHQXV9lChoBmgJaA9DCM3km22uUXNAlIaUUpRoFUu2aBZHQMtc2MspXp51fZQoaAZoCWgPQwhhi90+a2hxQJSGlFKUaBVLlWgWR0DLXNmYYzi0dX2UKGgGaAloD0MIPE88Z0uUdECUhpRSlGgVS79oFkdAy1zi9bHIZXV9lChoBmgJaA9DCJcbDHUYSnNAlIaUUpRoFUubaBZHQMtc5Co0hvB1fZQoaAZoCWgPQwjPLAlQ0ytzQJSGlFKUaBVLwGgWR0DLXPf/YJ3QdX2UKGgGaAloD0MIfbPNjemKcECUhpRSlGgVS5hoFkdAy1z9yjHn2nV9lChoBmgJaA9DCGRZMPFH4XJAlIaUUpRoFUu4aBZHQMtc/ffGdZt1fZQoaAZoCWgPQwi214LeG7pxQJSGlFKUaBVLumgWR0DLXQgNgBtDdX2UKGgGaAloD0MIlpaReg+gckCUhpRSlGgVS6xoFkdAy10KgqVhTnV9lChoBmgJaA9DCGCrBItDN3JAlIaUUpRoFUusaBZHQMtdDpxeb/h1fZQoaAZoCWgPQwhZFHZRNKFyQJSGlFKUaBVLu2gWR0DLXQ6e9SMtdX2UKGgGaAloD0MIoMIRpJLfckCUhpRSlGgVS7doFkdAy10dVmSQo3V9lChoBmgJaA9DCF7ZBYNrGG9AlIaUUpRoFUuWaBZHQMtdKJXyRSx1fZQoaAZoCWgPQwhBvK5f8D9yQJSGlFKUaBVLnmgWR0DLXSmL1mJ4dX2UKGgGaAloD0MI7j1cctzdb0CUhpRSlGgVS5JoFkdAy10qzQ/oq3V9lChoBmgJaA9DCM3n3O26pnJAlIaUUpRoFUupaBZHQMtdLyKFZgZ1fZQoaAZoCWgPQwg+IqZEEmxxQJSGlFKUaBVLrGgWR0DLXTcu3+dcdX2UKGgGaAloD0MIeSRens5CcUCUhpRSlGgVS65oFkdAy106yP+4snV9lChoBmgJaA9DCNW0i2kmi3JAlIaUUpRoFUuxaBZHQMtdRl6zE751fZQoaAZoCWgPQwg/NzRl52tyQJSGlFKUaBVLvGgWR0DLXUtc8kledX2UKGgGaAloD0MIh/vIrclHdECUhpRSlGgVS65oFkdAy11bAymALHV9lChoBmgJaA9DCLXAHhMpyG5AlIaUUpRoFUuYaBZHQMtdXtrj5sV1fZQoaAZoCWgPQwhAMbJkDkpwQJSGlFKUaBVLrWgWR0DLXWBaaCtjdX2UKGgGaAloD0MI4xbzc8Nuc0CUhpRSlGgVS59oFkdAy11lP9kz43V9lChoBmgJaA9DCDsA4q4eZXNAlIaUUpRoFUu8aBZHQMtdaPZ7HAB1fZQoaAZoCWgPQwgBpDZxMtpxQJSGlFKUaBVLrGgWR0DLXXBxiobXdX2UKGgGaAloD0MIycaDLfZxc0CUhpRSlGgVS7hoFkdAy112yFfzBnV9lChoBmgJaA9DCPG76ZbdrXJAlIaUUpRoFUuqaBZHQMtde8TrVvx1fZQoaAZoCWgPQwjZs+cyNS5xQJSGlFKUaBVLnWgWR0DLXYHFUADJdX2UKGgGaAloD0MIHVa45WN8cUCUhpRSlGgVS5poFkdAy12EWUKRdXV9lChoBmgJaA9DCJBKsaPxvHFAlIaUUpRoFUuqaBZHQMtdhmCqZMN1fZQoaAZoCWgPQwh6VtKKb0tyQJSGlFKUaBVLq2gWR0DLXYfegte2dX2UKGgGaAloD0MIcHmsGVkacECUhpRSlGgVS5RoFkdAy12MTAWSEHV9lChoBmgJaA9DCNRfr7CgVnJAlIaUUpRoFUuhaBZHQMtdj61b7j11fZQoaAZoCWgPQwjyttJrs2tzQJSGlFKUaBVLsGgWR0DLXaxVKf4AdX2UKGgGaAloD0MIt2J/2b2jcUCUhpRSlGgVS59oFkdAy12wkVvddnV9lChoBmgJaA9DCLVQMjm1TXJAlIaUUpRoFUuOaBZHQMtdtR3u/lB1fZQoaAZoCWgPQwhZ+WUwRph0QJSGlFKUaBVLzWgWR0DLXbhMrVe8dX2UKGgGaAloD0MIhZZ1/xhfckCUhpRSlGgVS5FoFkdAy12+5AhStXV9lChoBmgJaA9DCDykGCBRAXJAlIaUUpRoFUunaBZHQMtdv+8XenB1fZQoaAZoCWgPQwgNUYU/g4txQJSGlFKUaBVLuGgWR0DLXcLaGpMpdX2UKGgGaAloD0MIb4CZ72CJcUCUhpRSlGgVS45oFkdAy13Dx+az/3V9lChoBmgJaA9DCCnqzD2k/XJAlIaUUpRoFUu2aBZHQMtdw2A5Jbt1fZQoaAZoCWgPQwgYB5eOeQxxQJSGlFKUaBVLlmgWR0DLXdeZqmCRdX2UKGgGaAloD0MIQkEpWjnxc0CUhpRSlGgVS7RoFkdAy13mrf+CLHV9lChoBmgJaA9DCA02dR5VEnJAlIaUUpRoFUuvaBZHQMtd6vOpsGh1fZQoaAZoCWgPQwhVhQZi2Wd0QJSGlFKUaBVLyGgWR0DLXet/jKgadX2UKGgGaAloD0MIgpGXNXEwckCUhpRSlGgVS6RoFkdAy13tVsDW9XV9lChoBmgJaA9DCKeSAaCKwXJAlIaUUpRoFUu4aBZHQMtd7sQ2/BZ1fZQoaAZoCWgPQwjXNO84xflxQJSGlFKUaBVLs2gWR0DLXfKwt8NQdX2UKGgGaAloD0MIQInPnSDGckCUhpRSlGgVS6ZoFkdAy14V1schknV9lChoBmgJaA9DCAeynlo9cnFAlIaUUpRoFUupaBZHQMteG1vMr3F1fZQoaAZoCWgPQwha9E4F3M9wQJSGlFKUaBVLtWgWR0DLXhsx46fbdX2UKGgGaAloD0MIpx/URQqCdECUhpRSlGgVS8NoFkdAy14fHlOoHnV9lChoBmgJaA9DCJ5eKcsQr3JAlIaUUpRoFUudaBZHQMteIBvze411fZQoaAZoCWgPQwhtb7ckx0ZyQJSGlFKUaBVLtmgWR0DLXinpljEvdX2UKGgGaAloD0MIKZXwhB4ic0CUhpRSlGgVS7VoFkdAy14tSqlxfnV9lChoBmgJaA9DCG+e6pCbl3RAlIaUUpRoFUvIaBZHQMteNInjQzF1fZQoaAZoCWgPQwj4F0Fjpu1yQJSGlFKUaBVLymgWR0DLXjk3IdU9dX2UKGgGaAloD0MI2/tUFVqOcECUhpRSlGgVS4ZoFkdAy1474Z/CqXV9lChoBmgJaA9DCNLGEWtxT3JAlIaUUpRoFUuTaBZHQMteQB2GIsR1fZQoaAZoCWgPQwh7FRkdEKNyQJSGlFKUaBVLtmgWR0DLXkGokzGhdX2UKGgGaAloD0MI1PAtrBuPcUCUhpRSlGgVS65oFkdAy15OVSn+AHV9lChoBmgJaA9DCEw1s5YCD3NAlIaUUpRoFUu4aBZHQMteUBNM4951fZQoaAZoCWgPQwifrYODfRJzQJSGlFKUaBVLu2gWR0DLXld1ZDArdX2UKGgGaAloD0MIfa1LjRDXckCUhpRSlGgVS7xoFkdAy15dMt9QXXV9lChoBmgJaA9DCGB2Tx4WY3FAlIaUUpRoFUulaBZHQMteeZwn6VN1fZQoaAZoCWgPQwi6FFeV/ShzQJSGlFKUaBVLh2gWR0DLXnp3kgfVdX2UKGgGaAloD0MIhcyVQfUKdECUhpRSlGgVS7hoFkdAy16A7pV0cXV9lChoBmgJaA9DCEHyzqEMXHFAlIaUUpRoFUupaBZHQMtegJaiblR1fZQoaAZoCWgPQwhBZJEmXuJzQJSGlFKUaBVLqWgWR0DLXoHNHH3ldX2UKGgGaAloD0MIRpiiXJprc0CUhpRSlGgVS8NoFkdAy16M3hn8K3V9lChoBmgJaA9DCETecvXjqnNAlIaUUpRoFUu3aBZHQMtek8an7551fZQoaAZoCWgPQwhKXp1jwHhwQJSGlFKUaBVLnWgWR0DLXpV0xM37dX2UKGgGaAloD0MIizcyj7xxc0CUhpRSlGgVS61oFkdAy16ZHU+cIHV9lChoBmgJaA9DCGsr9pfda3BAlIaUUpRoFUuXaBZHQMtemn6l+E11fZQoaAZoCWgPQwhcc0f/SzhzQJSGlFKUaBVLvGgWR0DLXqjDsMRZdX2UKGgGaAloD0MIo1aYvlcjc0CUhpRSlGgVS6RoFkdAy16t8BuGbnV9lChoBmgJaA9DCN/CuvFuV3JAlIaUUpRoFUujaBZHQMterylFc6h1fZQoaAZoCWgPQwjzABb5dYRyQJSGlFKUaBVLw2gWR0DLXrCT4cm0dX2UKGgGaAloD0MIrMWnAJiucUCUhpRSlGgVS6hoFkdAy164uq3mWHV9lChoBmgJaA9DCPdbO1GSRXJAlIaUUpRoFUuFaBZHQMtew4cm0E51fZQoaAZoCWgPQwgNNJ9zNydyQJSGlFKUaBVLtmgWR0DLXsSbUgB+dX2UKGgGaAloD0MIj3Ba8CI4cECUhpRSlGgVS41oFkdAy17M48U21nV9lChoBmgJaA9DCLxcxHciBnFAlIaUUpRoFUudaBZHQMte1XiR4hV1fZQoaAZoCWgPQwjyP/m7dzFyQJSGlFKUaBVLnmgWR0DLXta704BFdX2UKGgGaAloD0MIOBH92npicUCUhpRSlGgVS4doFkdAy17hVBD5TXV9lChoBmgJaA9DCMr5Yu8FwHJAlIaUUpRoFUu7aBZHQMte4QoTfzl1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 9180,
"n_steps": 2048,
"gamma": 0.999,
"gae_lambda": 0.9,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 128,
"n_epochs": 30,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}