LovenOO commited on
Commit
5824fb7
·
1 Parent(s): e7c2f36

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 2.0732
24
- - Precision: 0.0194
25
- - Recall: 0.125
26
- - F1: 0.0336
27
- - Accuracy: 0.1551
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 2.1235 | 1.0 | 510 | 2.0738 | 0.0284 | 0.125 | 0.0462 | 0.2268 |
59
- | 2.1058 | 2.0 | 1020 | 2.0805 | 0.0194 | 0.125 | 0.0336 | 0.1551 |
60
- | 2.1039 | 3.0 | 1530 | 2.0780 | 0.0345 | 0.125 | 0.0541 | 0.2759 |
61
- | 2.1045 | 4.0 | 2040 | 2.0734 | 0.0284 | 0.125 | 0.0462 | 0.2268 |
62
- | 2.0963 | 5.0 | 2550 | 2.0779 | 0.0041 | 0.125 | 0.0080 | 0.0329 |
63
- | 2.0975 | 6.0 | 3060 | 2.0750 | 0.0284 | 0.125 | 0.0462 | 0.2268 |
64
- | 2.0944 | 7.0 | 3570 | 2.0734 | 0.0194 | 0.125 | 0.0336 | 0.1551 |
65
- | 2.1004 | 8.0 | 4080 | 2.0820 | 0.0029 | 0.125 | 0.0056 | 0.0231 |
66
- | 2.0974 | 9.0 | 4590 | 2.0724 | 0.0187 | 0.125 | 0.0326 | 0.1497 |
67
- | 2.0936 | 10.0 | 5100 | 2.0732 | 0.0194 | 0.125 | 0.0336 | 0.1551 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.8575
24
+ - Precision: 0.8355
25
+ - Recall: 0.8484
26
+ - F1: 0.8401
27
+ - Accuracy: 0.8753
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 1.0054 | 1.0 | 510 | 0.6756 | 0.7428 | 0.8093 | 0.7561 | 0.8095 |
59
+ | 0.4708 | 2.0 | 1020 | 0.5588 | 0.7870 | 0.8473 | 0.8101 | 0.8419 |
60
+ | 0.2992 | 3.0 | 1530 | 0.5928 | 0.8114 | 0.8595 | 0.8286 | 0.8660 |
61
+ | 0.2202 | 4.0 | 2040 | 0.6855 | 0.8465 | 0.8468 | 0.8452 | 0.8729 |
62
+ | 0.149 | 5.0 | 2550 | 0.6949 | 0.8136 | 0.8565 | 0.8324 | 0.8689 |
63
+ | 0.1246 | 6.0 | 3060 | 0.7984 | 0.8290 | 0.8518 | 0.8393 | 0.8719 |
64
+ | 0.0958 | 7.0 | 3570 | 0.7819 | 0.8326 | 0.8478 | 0.8391 | 0.8694 |
65
+ | 0.0922 | 8.0 | 4080 | 0.8141 | 0.8263 | 0.8486 | 0.8358 | 0.8724 |
66
+ | 0.0658 | 9.0 | 4590 | 0.8614 | 0.8472 | 0.8508 | 0.8476 | 0.8797 |
67
+ | 0.0662 | 10.0 | 5100 | 0.8575 | 0.8355 | 0.8484 | 0.8401 | 0.8753 |
68
 
69
 
70
  ### Framework versions