AMPLIFY_350M / amplify.py
Lolalb's picture
Upload AMPLIFY
aba41bc verified
raw
history blame
13.9 kB
# From https://stackoverflow.com/a/23689767
# From https://github.com/pytorch/pytorch/issues/97899
# From https://github.com/facebookresearch/llama/blob/main/llama/model.py
import yaml
import safetensors
import torch
from torch import nn
from torch.nn.functional import scaled_dot_product_attention
from flash_attn.flash_attn_interface import flash_attn_varlen_func
from xformers.ops import SwiGLU
from .rmsnorm import RMSNorm
from .rotary import precompute_freqs_cis, apply_rotary_emb
from .tokenizer import ProteinTokenizer
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import MaskedLMOutput
class DotDict(dict):
"""Dictionary that supports the dot notation to access attributes (similarly to HuggingFace)."""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class AMPLIFYConfig(PretrainedConfig):
model_type = "AMPLIFY"
# All config parameters must have a default value.
def __init__(
self,
hidden_size: int = 960,
num_hidden_layers: int = 32,
num_attention_heads: int = 15,
intermediate_size: int = 3840,
dropout_prob: float = 0,
embedding_init_range: float = 0.02,
decoder_init_range: float = 0.02,
rms_norm: bool = True,
norm_eps: float = 1e-05,
hidden_act: str = "SwiGLU",
layer_norm_after_embedding: bool = False,
layer_norm_before_last_layer: bool = True,
vocab_size: int = 27,
ffn_bias: bool = False,
att_bias: bool = False,
pad_token_id: int = 0,
max_length: int = 2048,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout_prob = dropout_prob
self.embedding_init_range = embedding_init_range
self.decoder_init_range = decoder_init_range
self.rms_norm = rms_norm
self.norm_eps = norm_eps
self.hidden_act = hidden_act
self.layer_norm_after_embedding = layer_norm_after_embedding
self.layer_norm_before_last_layer = layer_norm_before_last_layer
self.vocab_size = vocab_size
self.ffn_bias = ffn_bias
self.att_bias = att_bias
self.pad_token_id = pad_token_id
self.max_length = max_length
class EncoderBlock(nn.Module):
"""Transformer encoder block."""
def __init__(self, config: AMPLIFYConfig):
"""Initialize a EncoderBlock.
Args:
hidden_size (int): _description_
num_attention_heads (int): _description_
intermediate_size (int, optional): _description_. Defaults to 2048.
dropout_prob (float, optional): _description_. Defaults to 0.1.
activation (str, optional): _description_. Defaults to "relu".
rms_norm (bool, optional): _description_. Defaults to True.
norm_eps (float, optional): _description_. Defaults to 1e-5.
pad_token_id (int, optional): _description_. Defaults to 0.
max_length (int, optional): _description_. Defaults to 2048.
ffn_bias (bool, optional): _description_. Defaults to False.
att_bias (bool, optional): _description_. Defaults to False.
"""
super().__init__()
self.config = config
self.d_head = config.hidden_size // config.num_attention_heads
# Attention
self.q = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
self.k = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
self.v = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
self.resid_dropout = nn.Dropout(config.dropout_prob)
# Feedforward network
act = config.hidden_act.lower()
if act == "swiglu":
# To keep the number of parameters and the amount of computation constant, we reduce the number of
# hidden units by a factor of 2/3 (https://arxiv.org/pdf/2002.05202.pdf) and make it a multiple of 8 to
# avoid RuntimeError due to misaligned operand
multiple_of = 8
intermediate_size = int(2 * config.intermediate_size / 3)
intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=config.ffn_bias)
elif act == "relu":
self.ffn = nn.Sequential(
nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
nn.ReLU(),
nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
)
elif act == "gelu":
self.ffn = nn.Sequential(
nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
nn.GELU(),
nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
)
else:
raise ValueError(f"Unsupported hidden_act: {config.hidden_act}")
self.attention_norm = (
RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
)
self.ffn_norm = (
RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
)
self.ffn_dropout = nn.Dropout(config.dropout_prob)
def forward(
self,
x: torch.Tensor,
pad_mask: torch.Tensor,
freqs_cis: torch.Tensor,
output_attentions: bool,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
):
attn, contact = self._att_block(self.attention_norm(x), pad_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
x = x + attn
x = x + self._ff_block(self.ffn_norm(x))
return x, contact
def _att_block(
self,
x: torch.Tensor,
pad_mask: torch.Tensor,
freqs_cis: torch.Tensor,
output_attentions: bool,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
):
batch_size, seq_len, _ = x.shape
xq, xk, xv = self.q(x), self.k(x), self.v(x)
# Reshape for rotary embeddings
xq = xq.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
xk = xk.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
xv = xv.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
# Attn block
attn_weights = None
# Flash attention if the tensors are packed
if cu_seqlens is not None:
attn = flash_attn_varlen_func(
q=xq.squeeze(0),
k=xk.squeeze(0),
v=xv.squeeze(0),
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
dropout_p=0.0,
causal=False,
)
# Eager attention if attention weights are needed in the output
elif output_attentions:
attn_weights = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5)
if pad_mask is not None:
attn_weights = attn_weights + pad_mask.type(attn_weights.dtype)
attn_weights = attn_weights.softmax(-1)
attn = attn_weights @ xv.permute(0, 2, 1, 3)
attn = attn.transpose(1, 2)
# SDPA will pick an appropriate backend otherwise
else:
attn = scaled_dot_product_attention(
query=xq.transpose(1, 2),
key=xk.transpose(1, 2),
value=xv.transpose(1, 2),
attn_mask=pad_mask,
dropout_p=0,
).transpose(1, 2)
attn_scores = self.wo(attn.reshape(batch_size, seq_len, self.config.num_attention_heads * self.d_head))
return (self.resid_dropout(attn_scores), attn_weights)
def _ff_block(self, x: torch.Tensor):
return self.ffn_dropout(self.ffn(x))
class AMPLIFYPreTrainedModel(PreTrainedModel):
config_class = AMPLIFYConfig
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range)
class AMPLIFY(AMPLIFYPreTrainedModel):
"""The main model class.
Args:
config (amplify.model.amplify.AMPLIFYConfig): model configuration, usually defined from the Hydra configuration.
"""
def __init__(self, config: AMPLIFYConfig, **kwargs):
super().__init__(config)
self.config = config
self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
if config.layer_norm_after_embedding:
self.layer_norm_1 = (
RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
)
self.transformer_encoder = nn.ModuleList()
for _ in range(config.num_hidden_layers):
self.transformer_encoder.append(EncoderBlock(config))
if config.layer_norm_before_last_layer:
self.layer_norm_2 = (
RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length)
# Ensures freqs_cis is moved to the same devices as the model. Non-persistent buffers are not saved in the state_dict.
self.register_buffer("freqs_cis", freqs_cis, persistent=False)
# Initialize weights and apply final processing
self.post_init()
@classmethod
def load(cls, checkpoint_path: str, config_path: str):
with open(config_path, "r") as file:
cfg = yaml.safe_load(file)
model = AMPLIFY(AMPLIFYConfig(**cfg["model"], **cfg["tokenizer"]))
if checkpoint_path.endswith(".safetensors"):
state_dict = safetensors.torch.load_file(checkpoint_path)
elif checkpoint_path.endswith(".pt"):
state_dict = torch.load(checkpoint_path)
else:
raise ValueError(f"Expected checkpoint to be a `.pt` or `.safetensors` file.")
model.load_state_dict(state_dict)
return model
def forward(
self,
src,
position_ids: torch.Tensor = None,
max_seqlen: int = None,
cu_seqlens: torch.Tensor = None,
pad_mask=None,
output_hidden_states=False,
output_attentions=False,
):
# Initialize
hidden_states, attentions = [], []
# We will output all the hidden_states that have an index higher than output_hidden_index
if type(output_hidden_states) == bool and not output_hidden_states:
output_hidden_index = self.config.num_hidden_layers + 1
elif type(output_hidden_states) == int:
output_hidden_index = output_hidden_states
else:
output_hidden_index = 0
# Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length)
if pad_mask is not None:
pad_mask = pad_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, pad_mask.size(-1), 1)
if output_attentions:
pad_mask = torch.where(pad_mask == 1, float(0.0), float("-inf"))
# Checks to be done if inputs are packed sequences
if cu_seqlens is not None:
assert not output_attentions, "Output attentions is not supported when sequences are packed."
assert max_seqlen is not None, "Missing max_seqlen. It must be provided when cu_seqlens are not None."
assert src.shape[0] == 1, "Cumulative sequence lengths are provided but src are not packed."
assert src.is_cuda, "Packing uses an implementation of flash-attention and is only supported on GPU."
# RoPE
if position_ids is not None:
freqs_cis = self.freqs_cis[position_ids]
else:
freqs_cis = self.freqs_cis[: src.shape[1]].unsqueeze(0).repeat(src.shape[0], 1, 1)
# Embedding
x = self.encoder(src)
if self.config.layer_norm_after_embedding:
x = self.layer_norm_1(x)
# Transformer encoder
for idx, layer in enumerate(self.transformer_encoder):
x, attn = layer(x, pad_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
if idx >= output_hidden_index:
hidden_states.append(x)
if output_attentions:
attentions.append(attn)
# Classification head with layer norm
logits = self.decoder(self.layer_norm_2(x) if self.config.layer_norm_before_last_layer else x)
# Return logits or the output of the last hidden layer
return MaskedLMOutput(logits=logits, hidden_states=hidden_states, attentions=attentions)