File size: 9,554 Bytes
2650f1f
c0dbade
2650f1f
8c37c51
2650f1f
c0dbade
 
 
 
 
 
 
 
 
 
2650f1f
 
 
dea2d8a
2650f1f
 
 
 
 
8c37c51
c0dbade
2650f1f
 
 
 
 
 
 
 
 
 
 
 
 
c0dbade
 
 
2650f1f
dea2d8a
 
 
 
2650f1f
c0dbade
 
 
 
 
 
 
dea2d8a
8c37c51
c0dbade
 
8c37c51
c0dbade
8c37c51
 
 
c0dbade
8c37c51
c0dbade
8c37c51
c0dbade
8c37c51
c0dbade
 
 
 
 
 
2650f1f
c0dbade
 
 
 
 
 
 
2650f1f
c0dbade
2650f1f
c0dbade
2650f1f
 
c0dbade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf62f33
c0dbade
 
 
 
 
 
 
 
 
 
2650f1f
c0dbade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650f1f
c0dbade
 
 
 
 
2650f1f
c0dbade
2650f1f
c0dbade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70e7f8
c0dbade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e9d480
c0dbade
 
 
 
 
 
 
 
 
 
20853f2
 
c0dbade
 
 
 
 
 
 
 
 
 
 
 
 
 
1ada89d
c0dbade
 
 
 
 
2650f1f
c0dbade
 
2650f1f
c0dbade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
from typing import List, Optional, Union, Dict
from torch import Tensor
import copy

from itertools import compress

# HuggingFace
from tokenizers import Tokenizer
from transformers import PreTrainedTokenizerFast, BatchEncoding
from tokenizers.models import WordPiece
from tokenizers.pre_tokenizers import Split


class ProteinTokenizer(PreTrainedTokenizerFast):

    def __init__(
        self,
        vocab: dict,
        pad_token_id: int,
        mask_token_id: int,
        bos_token_id: int,
        eos_token_id: int,
        unk_token_id: int,
        model_max_length: int,
        other_special_token_ids: Optional[List[int]] = None,
        **kwargs,
    ):
        """Vocabulary comprising the amino acids, and the special tokens <unk>, <bos>, <eos>, <pad> and <mask>.

        Args:
            vocab_path (str): Path to the vocabulary file to load.
            pad_token_id (int): <PAD> token index.
            mask_token_id (int): <MASK> token index.
            bos_token_id (int): <BOS> token index.
            eos_token_id (int): <EOS> token index.
            unk_token_id (int): <UNK> token index.
            other_special_token_ids (Optional[List[int]]): List of additional special tokens.
        """
        # Create vocabulary with special tokens
        token_to_id = dict()
        id_to_token = dict()

        for token, token_id in vocab.items():
            token = token.strip()
            token_to_id[token] = token_id
            id_to_token[token_id] = token

        # Define tokenizer and model
        tokenizer_object = Tokenizer(WordPiece(vocab=token_to_id, unk_token=id_to_token.get(unk_token_id)))

        # Pretokenize by splitting every character
        tokenizer_object.pre_tokenizer = Split("", behavior="removed")

        super().__init__(
            vocab=vocab,
            model_max_length=model_max_length,
            padding_side="right",
            truncation_side="right",
            pad_token_id=pad_token_id,
            pad_token=id_to_token.get(pad_token_id),
            mask_token_id=mask_token_id,
            mask_token=id_to_token.get(mask_token_id),
            bos_token_id=bos_token_id,
            bos_token=id_to_token.get(bos_token_id),
            eos_token_id=eos_token_id,
            eos_token=id_to_token.get(eos_token_id),
            unk_token_id=unk_token_id,
            unk_token=id_to_token.get(unk_token_id),
            other_special_token_ids=other_special_token_ids,
            model_input_names=["input_ids", "attention_mask", "special_tokens_mask"],
            tokenizer_object=tokenizer_object,
        )

        if other_special_token_ids is not None:
            self.add_special_tokens({"additional_special_tokens": list(id_to_token.get(i) for i in other_special_token_ids)})

        self.key_to_padding = {"input_ids": self.pad_token_id, "attention_mask": 0, "special_tokens_mask": 1, "position_ids": 0}
        self.key_to_dtype = {
            "input_ids": torch.long,
            "attention_mask": torch.bool,
            "special_tokens_mask": torch.bool,
            "position_ids": torch.int,
        }

    def truncate(
        self,
        encoded_inputs: Dict[str, List[int]],
        max_length: Optional[int] = None,
        random_truncate: bool = True,
    ) -> Dict[str, List[List[int]]]:
        """
        Randomly truncate sequences in encoded inputs to the specified maximum length.

        Args:
            encoded_inputs (BatchEncoding): Tokenized inputs with keys like 'input_ids' as tensors.
            max_length (Optional[int]): Maximum length for truncation. Defaults to model's max length if None.
            random_truncate (bool): Whether to randomly truncate sequences.

        Returns:
            Dict[str, List[List[int]]]: Randomly truncated tokenized inputs.
        """

        for i, sequence in enumerate(encoded_inputs["input_ids"]):
            if len(sequence) > max_length:
                if random_truncate:
                    offset = torch.randint(0, len(sequence) - max_length + 1, (1,)).item()
                else:
                    offset = 0
                for key in encoded_inputs:
                    encoded_inputs[key][i] = encoded_inputs[key][i][offset : offset + max_length]

        # add option for different random truncate

        return encoded_inputs

    def remove_ambiguous(self, encoded_inputs: Dict[str, List[int]]) -> Dict[str, List[List[int]]]:
        """
        Remove ambiguous amino acids from the input sequences.

        Args:
            encoded_inputs (BatchEncoding): Tokenized inputs with keys like 'input_ids' as tensors.

        Returns:
            Dict[str, List[List[int]]]: Tokenized inputs without ambiguous amino acids.
        """

        for i, sequence in enumerate(encoded_inputs["input_ids"]):
            mask = [token_id != self.unk_token_id for token_id in sequence]
            for key in encoded_inputs:
                encoded_inputs[key][i] = list(compress(encoded_inputs[key][i], mask))
        return encoded_inputs

    def _pad(
        self,
        encoded_inputs: Dict[str, List[List[int]]],
        padding: Union[bool, str] = True,
        max_length: Optional[int] = None,
        pad_to_multiple_of: int = 8,
        **kwargs,
    ) -> Dict[str, List[List[int]]]:

        if isinstance(encoded_inputs, list):
            tmp = dict()
            for key in encoded_inputs[0]:
                tmp[key] = [encoded_inputs[i][key] for i in range(len(encoded_inputs))]
            encoded_inputs = tmp

        if max_length is None:
            max_length = self.model_max_length

        sequence_lengths = [len(sequence) for sequence in encoded_inputs["input_ids"]]
        if padding == "longest" or padding == True:
            max_length = min(max_length, max(sequence_lengths))

        if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        for i, seq_len in enumerate(sequence_lengths):
            if seq_len < max_length:
                for key in encoded_inputs:
                    encoded_inputs[key][i] = encoded_inputs[key][i] + [self.key_to_padding[key]] * (max_length - seq_len)

        return encoded_inputs

    def pad(
        self,
        encoded_inputs: Dict[str, List[List[int]]],
        padding: Union[bool, str] = True,
        max_length: Optional[int] = None,
        pad_to_multiple_of: int = 8,
        return_tensors: str = "pt",
        **kwargs,
    ) -> Dict[str, List[List[int]]]:

        encoded_inputs = self._pad(
            encoded_inputs,
            padding,
            max_length,
            pad_to_multiple_of,
            **kwargs,
        )

        if return_tensors is not None:
            return BatchEncoding(encoded_inputs, tensor_type=return_tensors)

        return encoded_inputs

    def __call__(
        self,
        text: str | List[str],
        max_length: Optional[int] = None,
        padding: Union[bool, str] = False,
        truncation: bool = False,
        random_truncate: bool = False,
        remove_ambiguous: bool = False,
        return_special_tokens_mask: bool = True,
        return_tensors: str = None,
        add_special_tokens: bool = True,
        **kwargs,
    ) -> Dict[str, Tensor]:

        if isinstance(text, str):
            encoded_inputs = self.__call__(
                [text],
                max_length,
                padding,
                truncation,
                random_truncate,
                remove_ambiguous,
                return_special_tokens_mask,
                return_tensors,
            )
            for key in encoded_inputs:
                encoded_inputs[key] = encoded_inputs[key][0]
            return encoded_inputs

        # Tokenize without truncation or padding
        encoded_inputs = super().__call__(
            text,
            padding=False,
            truncation=False,
            verbose=False,
            return_special_tokens_mask=return_special_tokens_mask,
            **kwargs,
        )

        if max_length is None:
            max_length = self.model_max_length

        # Add special tokens
        if add_special_tokens:
            encoded_inputs["input_ids"] = [[self.bos_token_id] + seq + [self.eos_token_id] for seq in encoded_inputs["input_ids"]]
            encoded_inputs["attention_mask"] = [[1, 1] + seq for seq in encoded_inputs["attention_mask"]]
            encoded_inputs["special_tokens_mask"] = [[1] + seq + [1] for seq in encoded_inputs["special_tokens_mask"]]

        # Truncate
        if truncation:
            encoded_inputs = self.truncate(
                encoded_inputs,
                max_length=max_length,  # Need to account for the BOS and EOS tokens
                random_truncate=random_truncate,
            )

        ## NOTE: Moved this to after truncation to avoid the offset when random truncation is used
        # Track original position indexes
        encoded_inputs["position_ids"] = [list(range(len(seq))) for seq in encoded_inputs["input_ids"]]

        # Remove ambiguous amino acids
        if remove_ambiguous:
            encoded_inputs = self.remove_ambiguous(encoded_inputs)

        # Add padding
        if padding:
            encoded_inputs = self._pad(encoded_inputs, max_length=max_length, return_tensors=return_tensors)

        if return_tensors is not None:
            return BatchEncoding(encoded_inputs, tensor_type=return_tensors)

        return encoded_inputs