File size: 14,140 Bytes
2650f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8defd9
2650f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d97ed
 
 
 
 
 
 
 
2650f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8bdeb2
 
2650f1f
 
 
 
 
 
99d97ed
2650f1f
99d97ed
2650f1f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# From https://stackoverflow.com/a/23689767
# From https://github.com/pytorch/pytorch/issues/97899
# From https://github.com/facebookresearch/llama/blob/main/llama/model.py
import yaml

import safetensors
import torch
from torch import nn
from torch.nn.functional import scaled_dot_product_attention
from flash_attn.flash_attn_interface import flash_attn_varlen_func
from xformers.ops import SwiGLU

from .rmsnorm import RMSNorm
from .rotary import precompute_freqs_cis, apply_rotary_emb
from .tokenizer import ProteinTokenizer

from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import MaskedLMOutput


class DotDict(dict):
    """Dictionary that supports the dot notation to access attributes (similarly to HuggingFace)."""

    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__


class AMPLIFYConfig(PretrainedConfig):
    model_type = "AMPLIFY"

    # All config parameters must have a default value.
    def __init__(
        self,
        hidden_size: int = 960,
        num_hidden_layers: int = 32,
        num_attention_heads: int = 15,
        intermediate_size: int = 3840,
        dropout_prob: float = 0,
        embedding_init_range: float = 0.02,
        decoder_init_range: float = 0.02,
        rms_norm: bool = True,
        norm_eps: float = 1e-05,
        hidden_act: str = "SwiGLU",
        layer_norm_after_embedding: bool = False,
        layer_norm_before_last_layer: bool = True,
        vocab_size: int = 27,
        ffn_bias: bool = False,
        att_bias: bool = False,
        pad_token_id: int = 0,
        max_length: int = 2048,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout_prob = dropout_prob
        self.embedding_init_range = embedding_init_range
        self.decoder_init_range = decoder_init_range
        self.rms_norm = rms_norm
        self.norm_eps = norm_eps
        self.hidden_act = hidden_act
        self.layer_norm_after_embedding = layer_norm_after_embedding
        self.layer_norm_before_last_layer = layer_norm_before_last_layer
        self.vocab_size = vocab_size
        self.ffn_bias = ffn_bias
        self.att_bias = att_bias
        self.pad_token_id = pad_token_id
        self.max_length = max_length


class EncoderBlock(nn.Module):
    """Transformer encoder block."""

    def __init__(self, config: AMPLIFYConfig):
        """Initialize a EncoderBlock.

        Args:
            hidden_size (int): _description_
            num_attention_heads (int): _description_
            intermediate_size (int, optional): _description_. Defaults to 2048.
            dropout_prob (float, optional): _description_. Defaults to 0.1.
            activation (str, optional): _description_. Defaults to "relu".
            rms_norm (bool, optional): _description_. Defaults to True.
            norm_eps (float, optional): _description_. Defaults to 1e-5.
            pad_token_id (int, optional): _description_. Defaults to 0.
            max_length (int, optional): _description_. Defaults to 2048.
            ffn_bias (bool, optional): _description_. Defaults to False.
            att_bias (bool, optional): _description_. Defaults to False.
        """
        super().__init__()

        self.config = config
        self.d_head = config.hidden_size // config.num_attention_heads

        # Attention
        self.q = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
        self.k = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
        self.v = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
        self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias)
        self.resid_dropout = nn.Dropout(config.dropout_prob)

        # Feedforward network
        act = config.hidden_act.lower()
        if act == "swiglu":
            # To keep the number of parameters and the amount of computation constant, we reduce the number of
            # hidden units by a factor of 2/3 (https://arxiv.org/pdf/2002.05202.pdf) and make it a multiple of 8 to
            # avoid RuntimeError due to misaligned operand
            multiple_of = 8
            intermediate_size = int(2 * config.intermediate_size / 3)
            intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
            self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=config.ffn_bias)
        elif act == "relu":
            self.ffn = nn.Sequential(
                nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
                nn.ReLU(),
                nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
            )
        elif act == "gelu":
            self.ffn = nn.Sequential(
                nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias),
                nn.GELU(),
                nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias),
            )
        else:
            raise ValueError(f"Unsupported hidden_act: {config.hidden_act}")

        self.attention_norm = (
            RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
        )
        self.ffn_norm = (
            RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
        )

        self.ffn_dropout = nn.Dropout(config.dropout_prob)

    def forward(
        self,
        x: torch.Tensor,
        pad_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        output_attentions: bool,
        max_seqlen: int = None,
        cu_seqlens: torch.Tensor = None,
    ):
        attn, contact = self._att_block(self.attention_norm(x), pad_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
        x = x + attn
        x = x + self._ff_block(self.ffn_norm(x))
        return x, contact

    def _att_block(
        self,
        x: torch.Tensor,
        pad_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        output_attentions: bool,
        max_seqlen: int = None,
        cu_seqlens: torch.Tensor = None,
    ):
        batch_size, seq_len, _ = x.shape
        xq, xk, xv = self.q(x), self.k(x), self.v(x)

        # Reshape for rotary embeddings
        xq = xq.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
        xk = xk.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
        xv = xv.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head)
        xq, xk = apply_rotary_emb(xq, xk, freqs_cis)

        # Attn block
        attn_weights = None

        # Flash attention if the tensors are packed
        if cu_seqlens is not None:
            attn = flash_attn_varlen_func(
                q=xq.squeeze(0),
                k=xk.squeeze(0),
                v=xv.squeeze(0),
                cu_seqlens_q=cu_seqlens,
                cu_seqlens_k=cu_seqlens,
                max_seqlen_q=max_seqlen,
                max_seqlen_k=max_seqlen,
                dropout_p=0.0,
                causal=False,
            )

        # Eager attention if attention weights are needed in the output
        elif output_attentions:
            attn_weights = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5)
            if pad_mask is not None:
                attn_weights = attn_weights + pad_mask.type(attn_weights.dtype)
            attn_weights = attn_weights.softmax(-1)
            attn = attn_weights @ xv.permute(0, 2, 1, 3)
            attn = attn.transpose(1, 2)

        # SDPA will pick an appropriate backend otherwise
        else:
            attn = scaled_dot_product_attention(
                query=xq.transpose(1, 2),
                key=xk.transpose(1, 2),
                value=xv.transpose(1, 2),
                attn_mask=pad_mask,
                dropout_p=0,
            ).transpose(1, 2)

        attn_scores = self.wo(attn.reshape(batch_size, seq_len, self.config.num_attention_heads * self.d_head))
        return (self.resid_dropout(attn_scores), attn_weights)

    def _ff_block(self, x: torch.Tensor):
        return self.ffn_dropout(self.ffn(x))


class AMPLIFYPreTrainedModel(PreTrainedModel):
    config_class = AMPLIFYConfig

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range)


class AMPLIFY(AMPLIFYPreTrainedModel):
    """The main model class.

    Args:
       config (amplify.model.amplify.AMPLIFYConfig): model configuration, usually defined from the Hydra configuration.
    """

    def __init__(self, config: AMPLIFYConfig, **kwargs):
        super().__init__(config)

        self.config = config

        self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)

        if config.layer_norm_after_embedding:
            self.layer_norm_1 = (
                RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
            )

        self.transformer_encoder = nn.ModuleList()
        for _ in range(config.num_hidden_layers):
            self.transformer_encoder.append(EncoderBlock(config))

        if config.layer_norm_before_last_layer:
            self.layer_norm_2 = (
                RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps)
            )

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size)

        freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length)

        # Ensures freqs_cis is moved to the same devices as the model. Non-persistent buffers are not saved in the state_dict.
        self.register_buffer("freqs_cis", freqs_cis, persistent=False)

        # Initialize weights and apply final processing
        self.post_init()

    @classmethod
    def load(cls, checkpoint_path: str, config_path: str):

        with open(config_path, "r") as file:
            cfg = yaml.safe_load(file)

        model = AMPLIFY(AMPLIFYConfig(**cfg["model"], **cfg["tokenizer"]))

        if checkpoint_path.endswith(".safetensors"):
            state_dict = safetensors.torch.load_file(checkpoint_path)
        elif checkpoint_path.endswith(".pt"):
            state_dict = torch.load(checkpoint_path)
        else:
            raise ValueError(f"Expected checkpoint to be a `.pt` or `.safetensors` file.")

        model.load_state_dict(state_dict)
        cfg["tokenizer"]["vocab_path"] = "/home/mila/l/lola.lebreton/AMPLIFY/conf/tokenizer/amplify_vocab.txt"
        tokenizer = ProteinTokenizer(**cfg["tokenizer"], model_max_length=cfg["trainer"]["train"]["max_length"])
        return model, tokenizer

    def forward(
        self,
        src,
        position_ids: torch.Tensor = None,
        max_seqlen: int = None,
        cu_seqlens: torch.Tensor = None,
        pad_mask=None,
        output_hidden_states=False,
        output_attentions=False,
    ):
        # Initialize
        hidden_states, attentions = [], []

        # We will output all the hidden_states that have an index higher than output_hidden_index
        if type(output_hidden_states) == bool and not output_hidden_states:
            output_hidden_index = self.config.num_hidden_layers + 1
        elif type(output_hidden_states) == int:
            output_hidden_index = output_hidden_states
        else:
            output_hidden_index = 0

        # Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length)
        if pad_mask is not None:
            pad_mask = pad_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, pad_mask.size(-1), 1)

            if output_attentions:
                pad_mask = torch.where(pad_mask == 1, float(0.0), float("-inf"))

        # Checks to be done if inputs are packed sequences
        if cu_seqlens is not None:
            assert not output_attentions, "Output attentions is not supported when sequences are packed."
            assert max_seqlen is not None, "Missing max_seqlen. It must be provided when cu_seqlens are not None."
            assert src.shape[0] == 1, "Cumulative sequence lengths are provided but src are not packed."
            assert src.is_cuda, "Packing uses an implementation of flash-attention and is only supported on GPU."

        # RoPE
        if position_ids is not None:
            freqs_cis = self.freqs_cis[position_ids]
        else:
            freqs_cis = self.freqs_cis[: src.shape[1]].unsqueeze(0).repeat(src.shape[0], 1, 1)

        # Embedding
        x = self.encoder(src)
        if self.config.layer_norm_after_embedding:
            x = self.layer_norm_1(x)

        # Transformer encoder
        for idx, layer in enumerate(self.transformer_encoder):
            x, attn = layer(x, pad_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
            if idx >= output_hidden_index:
                hidden_states.append(x)
            if output_attentions:
                attentions.append(attn)

        # Classification head with layer norm
        logits = self.decoder(self.layer_norm_2(x) if self.config.layer_norm_before_last_layer else x)

        # Return logits or the output of the last hidden layer
        return MaskedLMOutput(logits=logits, hidden_states=hidden_states, attentions=attentions)