Last commit not found
"""Dbrx configuration.""" | |
from typing import Any, Optional | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
class DbrxAttentionConfig(PretrainedConfig): | |
"""Configuration class for Dbrx Attention. | |
[`DbrxAttention`] class. It is used to instantiate attention layers | |
according to the specified arguments, defining the layers architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
attn_pdrop (`float`, *optional*, defaults to 0.0): | |
The dropout probability for the attention layers. | |
clip_qkv (`float`, *optional*, defualts to None): | |
If not `None`, clip the queries, keys, and values in the attention layer to this value. | |
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads. | |
rope_theta (float): The base frequency for rope. | |
""" | |
def __init__( | |
self, | |
attn_pdrop: float = 0, | |
clip_qkv: Optional[float] = None, | |
kv_n_heads: int = 1, | |
rope_theta: float = 10000.0, | |
**kwargs: Any, | |
): | |
super().__init__(**kwargs) | |
self.attn_pdrop = attn_pdrop | |
self.clip_qkv = clip_qkv | |
self.kv_n_heads = kv_n_heads | |
self.rope_theta = rope_theta | |
for k in ['model_type']: | |
if k in kwargs: | |
kwargs.pop(k) | |
if len(kwargs) != 0: | |
raise ValueError(f'Found unknown {kwargs=}') | |
def from_pretrained(cls, pretrained_model_name_or_path: str, | |
**kwargs: Any) -> 'PretrainedConfig': | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, | |
**kwargs) | |
if config_dict.get('model_type') == 'dbrx': | |
config_dict = config_dict['attn_config'] | |
if 'model_type' in config_dict and hasattr( | |
cls, | |
'model_type') and config_dict['model_type'] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
+ | |
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class DbrxFFNConfig(PretrainedConfig): | |
"""Configuration class for Dbrx FFN. | |
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to | |
the specified arguments, defining the layers architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
ffn_act_fn (dict, optional): A dict specifying activation function for the FFN. | |
The dict should have a key 'name' with the value being the name of | |
the activation function along with any additional keyword arguments. | |
ffn_hidden_size (int, optional): The hidden size of the feedforward network. | |
moe_num_experts (int, optional): The number of experts in the mixture of experts layer. | |
moe_top_k (int, optional): The number of experts to use in the mixture of experts layer. | |
moe_jitter_eps (float, optional): The jitter epsilon for the mixture of experts layer. | |
moe_loss_weight (float, optional): The loss weight for the mixture of experts layer. | |
moe_normalize_expert_weights (float, optional): The normalization factor for the expert weights. | |
uniform_expert_assignment (bool, optional): Whether to use uniform expert assignment. | |
This should only be used for benchmarking purposes. | |
""" | |
def __init__( | |
self, | |
ffn_act_fn: Optional[dict] = None, | |
ffn_hidden_size: int = 3584, | |
moe_num_experts: int = 4, | |
moe_top_k: int = 1, | |
moe_jitter_eps: Optional[float] = None, | |
moe_loss_weight: float = 0.01, | |
moe_normalize_expert_weights: Optional[float] = 1, | |
uniform_expert_assignment: bool = False, | |
**kwargs: Any, | |
): | |
super().__init__() | |
if ffn_act_fn is None: | |
ffn_act_fn = {'name': 'silu'} | |
self.ffn_act_fn = ffn_act_fn | |
self.ffn_hidden_size = ffn_hidden_size | |
self.moe_num_experts = moe_num_experts | |
self.moe_top_k = moe_top_k | |
self.moe_jitter_eps = moe_jitter_eps | |
self.moe_loss_weight = moe_loss_weight | |
self.moe_normalize_expert_weights = moe_normalize_expert_weights | |
self.uniform_expert_assignment = uniform_expert_assignment | |
for k in ['model_type']: | |
if k in kwargs: | |
kwargs.pop(k) | |
if len(kwargs) != 0: | |
raise ValueError(f'Found unknown {kwargs=}') | |
def from_pretrained(cls, pretrained_model_name_or_path: str, | |
**kwargs: Any) -> 'PretrainedConfig': | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, | |
**kwargs) | |
if config_dict.get('model_type') == 'dbrx': | |
config_dict = config_dict['ffn_config'] | |
if 'model_type' in config_dict and hasattr( | |
cls, | |
'model_type') and config_dict['model_type'] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
+ | |
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class DbrxConfig(PretrainedConfig): | |
"""Configuration class for Dbrx. | |
[`DbrxModel`]. It is used to instantiate a Dbrx model according to the | |
specified arguments, defining the model architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
d_model (`int`, *optional*, defaults to 6144): | |
Dimensionality of the embeddings and hidden states. | |
n_heads (`int`, *optional*, defaults to 48): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
n_layers (`int`, *optional*, defaults to 40): | |
Number of hidden layers in the Transformer encoder. | |
max_seq_len (`int`, *optional*, defaults to 32768): | |
The maximum sequence length of the model. | |
vocab_size (`int`, *optional*, defaults to 100352): | |
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`DbrxModel`]. | |
resid_pdrop (`float`, *optional*, defaults to 0.0): | |
The dropout probability applied to the attention output before combining with residual. | |
emb_pdrop (`float`, *optional*, defaults to 0.0): | |
The dropout probability for the embedding layer. | |
attn_config (`dict`, *optional*): | |
A dictionary used to configure the model's attention module. | |
ffn_config (`dict`, *optional*): | |
A dictionary used to configure the model's FFN module. | |
use_cache (`bool`, *optional*, defaults to `False`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
output_router_logits (`bool`, *optional*, defaults to `False`): | |
Whether or not the router logits should be returned by the model. Enabling this will also | |
allow the model to output the auxiliary loss. See [here]() for more details | |
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): | |
The aux loss factor for the total loss. | |
Example: | |
```python | |
>>> from transformers import DbrxConfig, DbrxModel | |
>>> # Initializing a Dbrx configuration | |
>>> configuration = DbrxConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = DbrxModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
``` | |
""" | |
model_type = 'dbrx' | |
attribute_map = { | |
'num_attention_heads': 'n_heads', | |
'hidden_size': 'd_model', | |
'num_hidden_layers': 'n_layers', | |
'max_position_embeddings': 'max_seq_len' | |
} | |
def __init__( | |
self, | |
d_model: int = 2048, | |
n_heads: int = 16, | |
n_layers: int = 24, | |
max_seq_len: int = 2048, | |
vocab_size: int = 32000, | |
resid_pdrop: float = 0.0, | |
emb_pdrop: float = 0.0, | |
attn_config: Optional[DbrxAttentionConfig] = None, | |
ffn_config: Optional[DbrxFFNConfig] = None, | |
use_cache: bool = True, | |
initializer_range: float = 0.02, | |
output_router_logits: bool = False, | |
router_aux_loss_coef: float = 0.05, | |
**kwargs: Any, | |
): | |
if attn_config is None: | |
self.attn_config = DbrxAttentionConfig() | |
elif isinstance(attn_config, dict): | |
self.attn_config = DbrxAttentionConfig(**attn_config) | |
else: | |
self.attn_config = attn_config | |
if ffn_config is None: | |
self.ffn_config = DbrxFFNConfig() | |
elif isinstance(ffn_config, dict): | |
self.ffn_config = DbrxFFNConfig(**ffn_config) | |
else: | |
self.ffn_config = ffn_config | |
self.d_model = d_model | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.max_seq_len = max_seq_len | |
self.vocab_size = vocab_size | |
self.resid_pdrop = resid_pdrop | |
self.emb_pdrop = emb_pdrop | |
self.use_cache = use_cache | |
self.initializer_range = initializer_range | |
self.output_router_logits = output_router_logits | |
self.router_aux_loss_coef = router_aux_loss_coef | |
tie_word_embeddings = kwargs.pop('tie_word_embeddings', False) | |
if tie_word_embeddings: | |
raise ValueError( | |
'tie_word_embeddings is not supported for Dbrx models.') | |
super().__init__( | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |