Depth Anything V2 - Large as MlPackage
Browse files
DepthAnything_v2-Large.mlpackage.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eecd277bf3394055bd9faa60960d6e279a1f7bed47ec5ad063f788680e65c91
|
3 |
+
size 618122036
|
DepthAnything_v2-Large_Mac.mlperf.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff701611f6b35cf21f928c7a9c83c8cc0a42daf7602b5be2735d489ebcd21095
|
3 |
+
size 75878
|
DepthAnything_v2-Large_iPhone16ProMax.mlperf.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba032b19dc9d98260aa878cad8962a01ecbf60d241900f01080cd4a6bb2acacb
|
3 |
+
size 76022
|
PyTorch2CoreML-dpt.ipynb
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "1e99de7a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"--2024-06-20 13:18:56-- https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt\n",
|
14 |
+
"Resolving docs-assets.developer.apple.com (docs-assets.developer.apple.com)... 17.253.73.203, 17.253.73.201\n",
|
15 |
+
"Connecting to docs-assets.developer.apple.com (docs-assets.developer.apple.com)|17.253.73.203|:443... connected.\n",
|
16 |
+
"HTTP request sent, awaiting response... 416 Requested Range Not Satisfiable\n",
|
17 |
+
"\n",
|
18 |
+
" The file is already fully retrieved; nothing to do.\n",
|
19 |
+
"\n",
|
20 |
+
"--2024-06-20 13:18:58-- https://raw.githubusercontent.com/apple/ml-mobileclip/main/mobileclip/configs/mobileclip_s0.json\n",
|
21 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
|
22 |
+
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
|
23 |
+
"HTTP request sent, awaiting response... 416 Range Not Satisfiable\n",
|
24 |
+
"\n",
|
25 |
+
" The file is already fully retrieved; nothing to do.\n",
|
26 |
+
"\n"
|
27 |
+
]
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"source": [
|
31 |
+
"#!git clone https://huggingface.co/spaces/depth-anything/Depth-Anything-V2\n",
|
32 |
+
"#!pip install -r Depth-Anything-V2/requirements.txt\n",
|
33 |
+
"#!pip install -q --upgrade coremltools"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 1,
|
39 |
+
"id": "d6cb8a61",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"import os\n",
|
44 |
+
"os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": 2,
|
50 |
+
"id": "801db364",
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"name": "stderr",
|
55 |
+
"output_type": "stream",
|
56 |
+
"text": [
|
57 |
+
"scikit-learn version 1.6.0 is not supported. Minimum required version: 0.17. Maximum required version: 1.5.1. Disabling scikit-learn conversion API.\n"
|
58 |
+
]
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"source": [
|
62 |
+
"import torch\n",
|
63 |
+
"import coremltools as ct\n",
|
64 |
+
"import numpy as np\n",
|
65 |
+
"from PIL import Image\n",
|
66 |
+
"import tempfile\n",
|
67 |
+
"from huggingface_hub import hf_hub_download\n",
|
68 |
+
"import sys\n",
|
69 |
+
"sys.path.append('./Depth-Anything-V2')\n",
|
70 |
+
"\n"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 15,
|
76 |
+
"id": "73882c02",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"from depth_anything_v2.dpt import DepthAnythingV2\n",
|
81 |
+
"from depth_anything_v2.util.transform import Resize, NormalizeImage, PrepareForNet\n",
|
82 |
+
"\n",
|
83 |
+
"import torch.nn.functional as F"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "markdown",
|
88 |
+
"id": "26f7dcff",
|
89 |
+
"metadata": {},
|
90 |
+
"source": [
|
91 |
+
"# 1. Load Depth-Anything-V2's vitl checkpoint"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 4,
|
97 |
+
"id": "e67aa722",
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [],
|
100 |
+
"source": [
|
101 |
+
"DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'\n",
|
102 |
+
"model_configs = {\n",
|
103 |
+
" 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},\n",
|
104 |
+
" 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},\n",
|
105 |
+
" 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},\n",
|
106 |
+
" 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}\n",
|
107 |
+
"}\n",
|
108 |
+
"encoder2name = {\n",
|
109 |
+
" 'vits': 'Small',\n",
|
110 |
+
" 'vitb': 'Base',\n",
|
111 |
+
" 'vitl': 'Large',\n",
|
112 |
+
" 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint\n",
|
113 |
+
"}\n",
|
114 |
+
"encoder = 'vitl'\n",
|
115 |
+
"model_name = encoder2name[encoder]\n",
|
116 |
+
"model = DepthAnythingV2(**model_configs[encoder])\n",
|
117 |
+
"filepath = hf_hub_download(repo_id=f\"depth-anything/Depth-Anything-V2-{model_name}\", filename=f\"depth_anything_v2_{encoder}.pth\", repo_type=\"model\")\n",
|
118 |
+
"state_dict = torch.load(filepath, map_location=\"cpu\")\n",
|
119 |
+
"model.load_state_dict(state_dict)\n",
|
120 |
+
"model = model.to(DEVICE).eval()"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": 8,
|
126 |
+
"id": "a632e6b4",
|
127 |
+
"metadata": {},
|
128 |
+
"outputs": [
|
129 |
+
{
|
130 |
+
"name": "stdout",
|
131 |
+
"output_type": "stream",
|
132 |
+
"text": [
|
133 |
+
"(3024, 4032, 3)\n"
|
134 |
+
]
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"image = Image.open(\"./sample_images/IMG_4061.jpeg\")\n",
|
139 |
+
"img = np.array(image)\n",
|
140 |
+
"print(img.shape)\n",
|
141 |
+
"h, w = img.shape[:2]\n",
|
142 |
+
"depth = model.infer_image(img)\n",
|
143 |
+
"depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0\n",
|
144 |
+
"depth = depth.astype(np.uint8)\n",
|
145 |
+
"depth_image = Image.fromarray(depth)\n",
|
146 |
+
"depth_image.save(\"depth_image.jpg\")"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 36,
|
152 |
+
"id": "77477217",
|
153 |
+
"metadata": {},
|
154 |
+
"outputs": [
|
155 |
+
{
|
156 |
+
"name": "stdout",
|
157 |
+
"output_type": "stream",
|
158 |
+
"text": [
|
159 |
+
"(3024, 4032, 3)\n"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"name": "stderr",
|
164 |
+
"output_type": "stream",
|
165 |
+
"text": [
|
166 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:73: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
167 |
+
" assert H % patch_H == 0, f\"Input image height {H} is not a multiple of patch height {patch_H}\"\n",
|
168 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:74: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
169 |
+
" assert W % patch_W == 0, f\"Input image width {W} is not a multiple of patch width: {patch_W}\"\n",
|
170 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dinov2.py:183: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
171 |
+
" if npatch == N and w == h:\n",
|
172 |
+
"/Users/dadler/Projects/Glide/ai-bots/depth/./Depth-Anything-V2/depth_anything_v2/dpt.py:147: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
173 |
+
" out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode=\"bilinear\", align_corners=True)\n"
|
174 |
+
]
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"source": [
|
178 |
+
"original_image = Image.open(\"./sample_images/IMG_4061.jpeg\")\n",
|
179 |
+
"origina_img = np.array(original_image)\n",
|
180 |
+
"print(origina_img.shape)\n",
|
181 |
+
"original_h, original_w = origina_img.shape[:2]\n",
|
182 |
+
"input_size = 518\n",
|
183 |
+
"image = original_image.resize((input_size,input_size), Image.Resampling.BILINEAR)\n",
|
184 |
+
"img = np.array(image)\n",
|
185 |
+
"input_image, (h, w) = model.image2tensor(img, input_size)\n",
|
186 |
+
"input_image = input_image.to(DEVICE)\n",
|
187 |
+
"with torch.no_grad():\n",
|
188 |
+
" depth = model(input_image)\n",
|
189 |
+
" depth = F.interpolate(depth[:, None], (h, w), mode=\"bilinear\", align_corners=True)[0, 0]\n",
|
190 |
+
" depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0\n",
|
191 |
+
" depth = depth.cpu().numpy().astype(np.uint8)\n",
|
192 |
+
"depth_image = Image.fromarray(depth).resize((original_w,original_h), Image.Resampling.BILINEAR)\n",
|
193 |
+
"depth_image.save(\"depth_image_2.jpg\")\n",
|
194 |
+
"\n",
|
195 |
+
"traced_model = torch.jit.trace(model, input_image)\n"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": 37,
|
201 |
+
"id": "42632870",
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [
|
204 |
+
{
|
205 |
+
"name": "stdout",
|
206 |
+
"output_type": "stream",
|
207 |
+
"text": [
|
208 |
+
"Traced PyTorch ImageEncoder ckpt out for jpg:\n",
|
209 |
+
">>> tensor([[3.8735, 3.9076, 4.0226, ..., 1.8554, 1.7260, 2.5633],\n",
|
210 |
+
" [4.3636, 4.1100, 4.1624, ..., 2.1774, 2.2929, 2.2913],\n",
|
211 |
+
" [4.3914, 4.2280, 4.2901, ..., 2.3076, 2.3133, 2.2698],\n",
|
212 |
+
" ...,\n",
|
213 |
+
" [5.8771, 5.8192, 5.8249, ..., 3.9578, 3.9079, 3.7710],\n",
|
214 |
+
" [6.1631, 6.1475, 6.1688, ..., 4.2481, 4.2320, 4.0410],\n",
|
215 |
+
" [6.4769, 6.4864, 6.4850, ..., 4.6766, 4.6218, 4.4442]],\n",
|
216 |
+
" device='mps:0', grad_fn=<SliceBackward0>)\n"
|
217 |
+
]
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"source": [
|
221 |
+
"example_output = traced_model(input_image)\n",
|
222 |
+
"print(\"Traced PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", example_output[0, :10])"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "markdown",
|
227 |
+
"id": "3c0d9c70",
|
228 |
+
"metadata": {},
|
229 |
+
"source": [
|
230 |
+
"You can see that there is some loss in precision, but it is still acceptable."
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "markdown",
|
235 |
+
"id": "ca182b4a",
|
236 |
+
"metadata": {},
|
237 |
+
"source": [
|
238 |
+
"# 2. Export ImageEncoder"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 38,
|
244 |
+
"id": "ef7af5c5",
|
245 |
+
"metadata": {},
|
246 |
+
"outputs": [],
|
247 |
+
"source": [
|
248 |
+
"image_means = [0.485, 0.456, 0.406]\n",
|
249 |
+
"image_stds = [0.229, 0.224, 0.225]"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": 73,
|
255 |
+
"id": "8f66a99c",
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"import torchvision.transforms as transforms\n",
|
260 |
+
"\n",
|
261 |
+
"class Wrapper(torch.nn.Module): \n",
|
262 |
+
" def __init__(self, model):\n",
|
263 |
+
" super().__init__()\n",
|
264 |
+
" _means = image_means\n",
|
265 |
+
" _stds = image_stds\n",
|
266 |
+
" self.model = model \n",
|
267 |
+
" self.stds = torch.tensor(_stds).half()[:,None,None]\n",
|
268 |
+
" self.means = torch.tensor(_means).half()[:,None,None]\n",
|
269 |
+
"\n",
|
270 |
+
" transform_model = torch.nn.Sequential(\n",
|
271 |
+
" transforms.Normalize(mean=image_means, std=image_stds)\n",
|
272 |
+
" )\n",
|
273 |
+
"\n",
|
274 |
+
" def forward(self, input): \n",
|
275 |
+
" input = input/255.0\n",
|
276 |
+
" intput = self.transform_model(input)\n",
|
277 |
+
" output = self.model(input)\n",
|
278 |
+
" output = (output - output.min()) / (output.max() - output.min()) \n",
|
279 |
+
" # Fix \"Image output, 'depthOutput', must have rank 4. Instead it has rank 3\"\n",
|
280 |
+
" output = output.unsqueeze(0)\n",
|
281 |
+
" # Fix \"Shape of the RGB/BGR image output, 'depthOutput', must be of kind (1, 3, H, W), i.e., first two dimensions must be (1, 3), instead they are: (1, 1)\"ArithmeticError\n",
|
282 |
+
" output = output.repeat(1, 3, 1, 1)\n",
|
283 |
+
" output = output * 255.0\n",
|
284 |
+
" return output\n",
|
285 |
+
"\n",
|
286 |
+
"# Instantiate the Wrapper model passing the original PyTorch FCN model\n",
|
287 |
+
"wrapped_model = Wrapper(traced_model)"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": 74,
|
293 |
+
"id": "b3da3350",
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [
|
296 |
+
{
|
297 |
+
"name": "stdout",
|
298 |
+
"output_type": "stream",
|
299 |
+
"text": [
|
300 |
+
"wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
|
301 |
+
">>> tensor([[[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
302 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
303 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
304 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
305 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
306 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
307 |
+
" ...,\n",
|
308 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
309 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
310 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
311 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
312 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
313 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
314 |
+
"\n",
|
315 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
316 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
317 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
318 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
319 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
320 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
321 |
+
" ...,\n",
|
322 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
323 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
324 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
325 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
326 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
327 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
328 |
+
"\n",
|
329 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
330 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
331 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
332 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
333 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
334 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
335 |
+
" ...,\n",
|
336 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
337 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
338 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
339 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
340 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
341 |
+
" 1.0220e+02, 1.0189e+02]]], device='mps:0')\n",
|
342 |
+
"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
|
343 |
+
">>> tensor([[[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
344 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
345 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
346 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
347 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
348 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
349 |
+
" ...,\n",
|
350 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
351 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
352 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
353 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
354 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
355 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
356 |
+
"\n",
|
357 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
358 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
359 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
360 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
361 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
362 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
363 |
+
" ...,\n",
|
364 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
365 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
366 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
367 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
368 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
369 |
+
" 1.0220e+02, 1.0189e+02]],\n",
|
370 |
+
"\n",
|
371 |
+
" [[1.3479e+00, 1.3024e+00, 1.3246e+00, ..., 3.6170e-02,\n",
|
372 |
+
" 1.2884e-01, 4.5228e-01],\n",
|
373 |
+
" [1.5584e+00, 1.4481e+00, 1.4059e+00, ..., 3.4862e-01,\n",
|
374 |
+
" 3.9270e-01, 3.3447e-01],\n",
|
375 |
+
" [1.6099e+00, 1.5023e+00, 1.5238e+00, ..., 3.6392e-01,\n",
|
376 |
+
" 3.8963e-01, 4.5296e-01],\n",
|
377 |
+
" ...,\n",
|
378 |
+
" [1.0288e+02, 1.0318e+02, 1.0304e+02, ..., 1.0168e+02,\n",
|
379 |
+
" 1.0194e+02, 1.0191e+02],\n",
|
380 |
+
" [1.0353e+02, 1.0333e+02, 1.0334e+02, ..., 1.0216e+02,\n",
|
381 |
+
" 1.0219e+02, 1.0212e+02],\n",
|
382 |
+
" [1.0339e+02, 1.0290e+02, 1.0300e+02, ..., 1.0180e+02,\n",
|
383 |
+
" 1.0220e+02, 1.0189e+02]]], device='mps:0')\n"
|
384 |
+
]
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"source": [
|
388 |
+
"i = np.asarray(original_image.resize((518, 518)))\n",
|
389 |
+
"i = i.astype(\"float32\")\n",
|
390 |
+
"i = np.transpose(i, (2, 0, 1))\n",
|
391 |
+
"i = np.expand_dims(i, 0)\n",
|
392 |
+
"i = torch.from_numpy(i).to(DEVICE)\n",
|
393 |
+
"\n",
|
394 |
+
"with torch.no_grad():\n",
|
395 |
+
" out = wrapped_model(i)\n",
|
396 |
+
"\n",
|
397 |
+
"print(\"wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])\n",
|
398 |
+
"\n",
|
399 |
+
"traced_model_w = torch.jit.trace(wrapped_model, i)\n",
|
400 |
+
"\n",
|
401 |
+
"with torch.no_grad():\n",
|
402 |
+
" out = traced_model_w(i)\n",
|
403 |
+
"\n",
|
404 |
+
"print(\"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"cell_type": "code",
|
409 |
+
"execution_count": 86,
|
410 |
+
"id": "db5cb9b9",
|
411 |
+
"metadata": {},
|
412 |
+
"outputs": [
|
413 |
+
{
|
414 |
+
"data": {
|
415 |
+
"text/plain": [
|
416 |
+
"(torch.Size([1, 3, 518, 518]), torch.Size([1, 3, 518, 518]))"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
"execution_count": 86,
|
420 |
+
"metadata": {},
|
421 |
+
"output_type": "execute_result"
|
422 |
+
}
|
423 |
+
],
|
424 |
+
"source": [
|
425 |
+
"i.shape, out.shape"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": 92,
|
431 |
+
"id": "681683aa",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [
|
434 |
+
{
|
435 |
+
"name": "stdout",
|
436 |
+
"output_type": "stream",
|
437 |
+
"text": [
|
438 |
+
"(1, 3, 518, 518) 255.0 0.0 104.07214\n",
|
439 |
+
"(518, 518, 3) 255 0 103.57204722648738\n"
|
440 |
+
]
|
441 |
+
}
|
442 |
+
],
|
443 |
+
"source": [
|
444 |
+
"tmp = out.cpu().numpy()\n",
|
445 |
+
"\n",
|
446 |
+
"print(tmp.shape, tmp.max(), tmp.min(), tmp.mean())\n",
|
447 |
+
"# Convert to 3, 256, 256\n",
|
448 |
+
"tmp = np.transpose(tmp, (0, 2, 3, 1)).astype(np.uint8)\n",
|
449 |
+
"tmp = tmp.squeeze()\n",
|
450 |
+
"print(tmp.shape, tmp.max(), tmp.min(), tmp.mean())\n",
|
451 |
+
"Image.fromarray(tmp)\n",
|
452 |
+
"tmp_image = Image.fromarray(tmp).resize((original_w,original_h))\n",
|
453 |
+
"tmp_image.save(\"depth_image_3.png\")"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"cell_type": "code",
|
458 |
+
"execution_count": 71,
|
459 |
+
"id": "9e4f00bd",
|
460 |
+
"metadata": {},
|
461 |
+
"outputs": [
|
462 |
+
{
|
463 |
+
"data": {
|
464 |
+
"text/plain": [
|
465 |
+
"torch.Size([1, 3, 518, 518])"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
"execution_count": 71,
|
469 |
+
"metadata": {},
|
470 |
+
"output_type": "execute_result"
|
471 |
+
}
|
472 |
+
],
|
473 |
+
"source": [
|
474 |
+
"i.shape"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"cell_type": "code",
|
479 |
+
"execution_count": null,
|
480 |
+
"id": "304ae7b0",
|
481 |
+
"metadata": {},
|
482 |
+
"outputs": [
|
483 |
+
{
|
484 |
+
"name": "stderr",
|
485 |
+
"output_type": "stream",
|
486 |
+
"text": [
|
487 |
+
"Converting PyTorch Frontend ==> MIL Ops: 100%|ββββββββββ| 1247/1248 [00:00<00:00, 6927.17 ops/s]\n",
|
488 |
+
"Running MIL frontend_pytorch pipeline: 100%|ββββββββββ| 5/5 [00:00<00:00, 90.46 passes/s]\n",
|
489 |
+
"Running MIL default pipeline: 100%|ββββββββββ| 89/89 [00:06<00:00, 13.75 passes/s]\n",
|
490 |
+
"Running MIL backend_mlprogram pipeline: 100%|ββββββββββ| 12/12 [00:00<00:00, 99.10 passes/s]\n"
|
491 |
+
]
|
492 |
+
}
|
493 |
+
],
|
494 |
+
"source": [
|
495 |
+
"traced_model_w.eval()\n",
|
496 |
+
"image_input = ct.ImageType(name=\"colorImage\", shape=i.shape)\n",
|
497 |
+
"image_encoder_model = ct.converters.convert(\n",
|
498 |
+
" traced_model_w,\n",
|
499 |
+
" convert_to=\"mlprogram\",\n",
|
500 |
+
" inputs=[image_input],\n",
|
501 |
+
" outputs=[ct.ImageType(name=\"depthOutput\")],\n",
|
502 |
+
" minimum_deployment_target=ct.target.iOS16,\n",
|
503 |
+
")\n",
|
504 |
+
"image_encoder_model.save(\"DepthAnything_v2_large.mlpackage\")"
|
505 |
+
]
|
506 |
+
}
|
507 |
+
],
|
508 |
+
"metadata": {
|
509 |
+
"kernelspec": {
|
510 |
+
"display_name": "pytorch2",
|
511 |
+
"language": "python",
|
512 |
+
"name": "python3"
|
513 |
+
},
|
514 |
+
"language_info": {
|
515 |
+
"codemirror_mode": {
|
516 |
+
"name": "ipython",
|
517 |
+
"version": 3
|
518 |
+
},
|
519 |
+
"file_extension": ".py",
|
520 |
+
"mimetype": "text/x-python",
|
521 |
+
"name": "python",
|
522 |
+
"nbconvert_exporter": "python",
|
523 |
+
"pygments_lexer": "ipython3",
|
524 |
+
"version": "3.10.14"
|
525 |
+
}
|
526 |
+
},
|
527 |
+
"nbformat": 4,
|
528 |
+
"nbformat_minor": 5
|
529 |
+
}
|