File size: 12,017 Bytes
640ae6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
---
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: apache-2.0
library_name: vllm
extra_gated_description: If you want to learn more about how we process your personal
  data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
---

# Model Card for Pixtral-12B-2409

The Pixtral-12B-2409 is a Multimodal Model of 12B parameters plus a 400M parameter vision encoder.

For more details about this model please refer to our release [blog post](https://mistral.ai/news/pixtral-12b/).

Feel free to try it [here](https://chat.mistral.ai/chat)

## Key features
- Natively multimodal, trained with interleaved image and text data
- 12B parameter Multimodal Decoder + 400M parameter Vision Encoder
- Supports variable image sizes
- Leading performance in its weight class on multimodal tasks
- Maintains state-of-the-art performance on text-only benchmarks
- Sequence length: 128k
- License: Apache 2.0

## Benchmarks
The performance of Pixtral-12B-2409 compared to multimodal models.  
All models were re-evaluated and benchmarked through the same evaluation pipeline.

### Multimodal Benchmarks

|                   | Pixtral 12B | Qwen2 7B VL | LLaVA-OV 7B | Phi-3 Vision | Phi-3.5 Vision |
|:-------------------:|:-------------:|:----------:|:-------------:|:--------------:|:--------------:|
| **MMMU** *(CoT)*      | <ins>**52.5**</ins>        | 47.6     | 45.1        | 40.3         | 38.3         |
| **Mathvista** *(CoT)*   | <ins>**58.0**</ins>        | 54.4     | 36.1        | 36.4         | 39.3         |
| **ChartQA** *(CoT)*    | <ins>**81.8**</ins>        | 38.6     | 67.1        | 72.0         | 67.7         |
| **DocVQA** *(ANLS)*        | 90.7        | <ins>**94.5**</ins>     | 90.5        | 84.9         | 74.4         |
| **VQAv2** *(VQA Match)*         | <ins>**78.6**</ins>        | 75.9     | 78.3        | 42.4         | 56.1         |

### Instruction Following

|                   | Pixtral 12B | Qwen2 7B VL | LLaVA-OV 7B | Phi-3 Vision | Phi-3.5 Vision |
|:-------------------:|:-------------:|:----------:|:-------------:|:--------------:|:--------------:|
| **MM MT-Bench**   | <ins>**6.05**</ins>        | 5.43     | 4.12        | 3.70         |4.46         |
| **Text MT-Bench** | <ins>**7.68**</ins>        | 6.41     | 6.94        | 6.27         |6.31         |
| **MM IF-Eval**    | <ins>**52.7**</ins>        | 38.9     | 42.5        | 41.2         |31.4         |
| **Text IF-Eval**  | <ins>**61.3**</ins>        | 50.1     | 51.4        | 50.9         |47.4         |

### Text Benchmarks

|                   | Pixtral 12B | Qwen2 7B VL | LLaVA-OV 7B | Phi-3 Vision | Phi-3.5 Vision |
|:-------------------:|:-------------:|:----------:|:-------------:|:--------------:|:--------------:|
| **MMLU** *(5-shot)*   | <ins>**69.2**</ins>        | 68.5     | 67.9        | 63.5         | 63.6         |
| **Math** *(Pass@1)*         | <ins>**48.1**</ins>        | 27.8     | 38.6        | 29.2         | 28.4         |
| **Human Eval** *(Pass@1)*    | <ins>**72.0**</ins>        | 64.6     | 65.9        | 48.8         | 49.4         |

### Comparison with Closed Source and Larger Models
|                   | Pixtral 12B | Claude-3 Haiku | Gemini-1.5 Flash 8B *(0827)* | .  |*LLaVA-OV 72B* | *GPT-4o* | *Claude-3.5 Sonnet* |
|:-------------------:|:-------------:|:----------------:|:----------------------:|:--------:|:----:|:-------------------:|:-------------------:|
| **MMMU** *(CoT)*      | **52.5**        | 50.4           | 50.7                |   |*54.4*   |<ins>*68.6*</ins>   | *68.0*              |
| **Mathvista** *(CoT)*  | **58.0**        | 44.8           | 56.9                |  |*57.2*   |<ins>*64.6*</ins>   | *64.4*              |
| **ChartQA** *(CoT)*  | **81.8**        | 69.6           | 78.0                |  |*66.9*   |*85.1*   | <ins>*87.6*</ins>              |
| **DocVQA** *(ANLS)* | **90.7**</ins>        | 74.6           | 79.5                   | |<ins>*91.6*</ins>   |*88.9*   | *90.3*              |
| **VQAv2** *(VQA Match)* | **78.6**        | 68.4           | 65.5                |  |<ins>*83.8*</ins>   |*77.8*   | *70.7*              |

## Usage Examples

### vLLM (recommended)

We recommend using Pixtral with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines with Pixtral.

**_Installation_**

Make sure you install `vLLM >= v0.6.1.post1`:

```
pip install --upgrade vllm
```

Also make sure you have `mistral_common >= 1.4.1` installed:

```
pip install --upgrade mistral_common
```

You can also make use of a ready-to-go [docker image](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39?context=explore).

**_Simple Example_**

```py
from vllm import LLM
from vllm.sampling_params import SamplingParams

model_name = "mistralai/Pixtral-12B-2409"

sampling_params = SamplingParams(max_tokens=8192)

llm = LLM(model=model_name, tokenizer_mode="mistral")

prompt = "Describe this image in one sentence."
image_url = "https://picsum.photos/id/237/200/300"

messages = [
    {
        "role": "user",
        "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": image_url}}]
    },
]

outputs = llm.chat(messages, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)
```

**_Advanced Example_**

You can also pass multiple images per message and/or pass multi-turn conversations

```py
from vllm import LLM
from vllm.sampling_params import SamplingParams

model_name = "mistralai/Pixtral-12B-2409"
max_img_per_msg = 5

sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)

# Lower max_num_seqs or max_model_len on low-VRAM GPUs.
llm = LLM(model=model_name, tokenizer_mode="mistral", limit_mm_per_prompt={"image": max_img_per_msg}, max_model_len=32768)

prompt = "Describe the following image."

url_1 = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
url_2 = "https://picsum.photos/seed/picsum/200/300"
url_3 = "https://picsum.photos/id/32/512/512"

messages = [
    {
        "role": "user",
        "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": url_1}}, {"type": "image_url", "image_url": {"url": url_2}}],
    },
    {
        "role": "assistant",
        "content": "The images shows nature.",
    },
    {
        "role": "user",
        "content": "More details please and answer only in French!."
    },
    {
        "role": "user",
        "content": [{"type": "image_url", "image_url": {"url": url_3}}],
    }
]

outputs = llm.chat(messages=messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```

You can find more examples and tests directly in vLLM.
- [Examples](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_pixtral.py)
- [Tests](https://github.com/vllm-project/vllm/blob/main/tests/models/test_pixtral.py)

**_Server_**

You can also use pixtral in a server/client setting. 

1. Spin up a server:

```
vllm serve mistralai/Pixtral-12B-2409 --tokenizer_mode mistral --limit_mm_per_prompt 'image=4'
```

2. And ping the client:

```
curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer token' \
--data '{
    "model": "mistralai/Pixtral-12B-2409",
    "messages": [
      {
        "role": "user",
        "content": [
            {"type" : "text", "text": "Describe this image in detail please."},
            {"type": "image_url", "image_url": {"url": "https://s3.amazonaws.com/cms.ipressroom.com/338/files/201808/5b894ee1a138352221103195_A680%7Ejogging-edit/A680%7Ejogging-edit_hero.jpg"}},
            {"type" : "text", "text": "and this one as well. Answer in French."},
            {"type": "image_url", "image_url": {"url": "https://www.wolframcloud.com/obj/resourcesystem/images/a0e/a0ee3983-46c6-4c92-b85d-059044639928/6af8cfb971db031b.png"}}
        ]
      }
    ]
  }'
```

### Mistral-inference

We recommend using [mistral-inference](https://github.com/mistralai/mistral-inference) to quickly try out / "vibe-check" Pixtral.


**_Install_**

Make sure to have `mistral_inference >= 1.4.1` installed.

```
pip install mistral_inference --upgrade
```

**_Download_**

```py
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Pixtral-12B-2409", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```

**_Chat_**

After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. 
You can pass text and images or image urls to the model in *instruction-following* mode as follows:

```
mistral-chat $HOME/mistral_models/Pixtral --instruct --max_tokens 256 --temperature 0.35
```

*E.g.* Try out something like:

```
Text prompt: What can you see on the following picture?
[You can input zero, one or more images now.]
Image path or url [Leave empty and press enter to finish image input]: https://picsum.photos/id/237/200/300
Image path or url [Leave empty and press enter to finish image input]:
I see a black dog lying on a wooden surface. The dog appears to be looking up, and its eyes are clearly visible.
```

**_Python_**

You can also run the model in a Python shell as follows.

```py
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest

tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path)

url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
prompt = "Describe the image."

completion_request = ChatCompletionRequest(messages=[UserMessage(content=[ImageURLChunk(image_url=url), TextChunk(text=prompt)])])

encoded = tokenizer.encode_chat_completion(completion_request)

images = encoded.images
tokens = encoded.tokens

out_tokens, _ = generate([tokens], model, images=[images], max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

print(result)
```

## Limitations

The Pixtral model does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

## The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Diogo Costa, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall