Lite-Coder commited on
Commit
ce1b9d1
·
verified ·
1 Parent(s): f4924bf

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -34,3 +34,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ figures/environment_preparation.png filter=lfs diff=lfs merge=lfs -text
38
+ figures/feasibility_check.png filter=lfs diff=lfs merge=lfs -text
39
+ figures/overall_pipeline.png filter=lfs diff=lfs merge=lfs -text
40
+ figures/task_sampling.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## LiteCoder-4b-Terminal-preview
2
+
3
+ **LiteCoder-4b-Terminal-preview** is part of our series of models specialized in terminal-based interactions and stems from our recent efforts to develop capable small and medium-sized code agent models. The model is fine-tuned from `
4
+ Qwen3-4B-Instruct-2507` on the [LiteCoder-SFT-Terminal-preview](https://huggingface.co/datasets/Lite-Coder/LiteCoder-SFT-Terminal-preview) dataset.
5
+
6
+ **Notably, this model achieves competitive results using fewer than 1,000 training samples.** By relying entirely on a fully synthetic pipeline—without converting any existing datasets—we were able to secure significant gains on the challenging Terminal Bench, matching the performance of leading open-source models with extreme data efficiency.
7
+
8
+ ## Released Artifacts
9
+
10
+ | 2025/12/17 | | |
11
+ | --- | --- | --- |
12
+ | LiteCoder-4b-Terminal-preview | Model | https://huggingface.co/Lite-Coder/LiteCoder-4b-Terminal-preview |
13
+ | LiteCoder-SFT-Terminal-preview | Dataset | https://huggingface.co/datasets/Lite-Coder/LiteCoder-SFT-Terminal-preview |
14
+
15
+ ## Results
16
+
17
+ Our models achieve competitive results on **Terminal Bench**, significantly outperforming general-purpose models of similar (and even larger) sizes.
18
+
19
+ **Terminal Bench 1.0 Performance**
20
+
21
+ | **Model** | **Agent** | **Results** |
22
+ | --- | --- | --- |
23
+ | **LiteCoder-30a3b-Terminal-preview** | Terminus 2 | **18.75%** |
24
+ | Qwen3-30B-A3B-Nex-N1 | Terminus 2 | 18.75% |
25
+ | **LiteCoder-4b-Terminal-preview** | Terminus 2 | **13.75%** |
26
+ | Qwen3-30B-A3B-Instruct | Terminus 2 | 12.5% |
27
+ | Qwen3-4B-Instruct | Terminus 2 | 5.0% |
28
+
29
+ **Terminal Bench 2.0 Performance**
30
+
31
+ | **Model** | **Agent** | **Results** |
32
+ | --- | --- | --- |
33
+ | **LiteCoder-30a3b-Terminal-preview** | Terminus 2 | **5.6%** |
34
+ | **LiteCoder-4b-Terminal-preview** | Terminus 2 | **3.3%** |
35
+ | Qwen3-32B | Terminus 2 | 1.9% |
36
+ | InternLM3-8B-Nex-N1 | Terminus 2 | 0% |
37
+ | Qwen3-8B | Terminus 2 | 0% |
38
+
39
+ ## Citation
40
+
41
+ ```latex
42
+ @misc{LiteCoder Team,
43
+ title={LiteCoder: Advancing Small and Medium-sized Code Agents},
44
+ author={Xiaoxuan Peng and Xinyu Lu and Kaiqi Zhang and Taosong Fang and Boxi Cao and Yaojie Lu},
45
+ year={2025},
46
+ }
47
+ ```
48
+
49
+ ## Future Directions
50
+
51
+ - **Scaling Environments:** Expanding the diversity of Docker environments and teacher models to improve generalization.
52
+ - **Agentic RL:** Implementing Reinforcement Learning specifically for multi-turn agentic workflows.
53
+
54
+ ## Team & Contributions
55
+
56
+ - **Xiaoxuan Peng:** Main Contributor
57
+ - [Xinyu Lu](https://scholar.google.com/citations?user=_OsLG8EAAAAJ&hl=zh-CN)**:** Project Lead
58
+ - **Kaiqi Zhang:** Contributor
59
+ - **Taosong Fang**: Contributor
60
+ - **Boxi Cao:** Contributor
61
+ - **Yaojie Lu:** Contributor
62
+
63
+ ## Acknowledgements
64
+
65
+ LiteCoder builds upon multiple open-source projects, including [Harbor](https://github.com/laude-institute/harbor). The models are trained using [AutoAlign](https://github.com/icip-cas/AutoAlign) framework.
66
+
67
+ ## Join Us
68
+
69
+ Join the discussion on our [Discord](https://discord.gg/EX9qZe8B).
figures/environment_preparation.png ADDED

Git LFS Details

  • SHA256: b13efb3ec072b2cb97f6cc37abd9490b0ec15c5816b3eb9c84d5cce7428ecd6f
  • Pointer size: 131 Bytes
  • Size of remote file: 203 kB
figures/feasibility_check.png ADDED

Git LFS Details

  • SHA256: 821155a66e4fda1b9175618cbeaea84fc6e8926fe4aacdb1c1fc7d89c8287215
  • Pointer size: 131 Bytes
  • Size of remote file: 225 kB
figures/overall_pipeline.png ADDED

Git LFS Details

  • SHA256: fa8ebeeb60739cec855710e6ef34c1b98109aa7364fede1fe1c4962c36dcb214
  • Pointer size: 131 Bytes
  • Size of remote file: 114 kB
figures/task_sampling.png ADDED

Git LFS Details

  • SHA256: c2644bb68274459397169c2b0200cff4489ee2e1c4e7cef443b6912eab42de6a
  • Pointer size: 131 Bytes
  • Size of remote file: 234 kB