--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for distilbert-base-task-multi-label-classification Model ## Model Details ### Model Description This model is based on the distillation of the BERT base model, which is a widely used language model. The distillation process involves training a smaller model to mimic the behavior and predictions of the larger BERT model. The purpose of this model is to perform fine-tuning on the distilbert-base-pwc-task-multi-label-classification checkpoint for multi-label classification tasks. Fine-tuning approach can be applied to other models such as RoBERTa, DeBERTa, DistilBERT, CANINE, and more. The notebook provides a practical guide for utilizing these models in various classification scenarios. - **Developed by:** Lina Saba - **Model type:** bert for multi-label classification - **Language(s) (NLP):** Python - **Finetuned from model:** distilbert-base-pwc-task-multi-label-classification ### Model Sources [optional] - **Repository:** https://colab.research.google.com/drive/1Z314gK2qixK_0ujgQ3nvqvar1iV3QnoF?usp=sharing - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses This model aims to fine-tune BERT to predict one or more labels for a given piece of text. The related notebook illustrates how to fine-tune a distilbert-base-pwc-task-multi-label-classification model, Knowing that it's the same way to fine-tune a RoBERTa, DeBERTa, DistilBERT, CANINE, ... checkpoint. ### Direct Use Predict the labels of a piece of text from this list = { 0: 'aspersion', 1: 'hyperbole', 2: 'lying', 3: 'namecalling', 4: 'noncooperation', 5: 'offtopic', 6: 'other_incivility', 7: 'pejorative', 8: 'sarcasm', 9: 'vulgarity' } ### Downstream Use [optional] This model is fine-tuned on a dataset; a collection of more than 6000 comments on Arizona Daily Star news articles from 2011 that have been manually annotated for various forms of incivility including aspersion, namecalling, sarcasm, and vulgarity. ## Bias, Risks, and Limitations Technical limitations : - Can't print more than one identified label using pipeline. - Half of the test results aren't exactly the same as what expected ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]