LinaSaba commited on
Commit
63d11ff
·
1 Parent(s): 3188cc0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -1
README.md CHANGED
@@ -7,4 +7,53 @@ library_name: sklearn
7
  pipeline_tag: text-classification
8
  tags:
9
  - clim
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pipeline_tag: text-classification
8
  tags:
9
  - clim
10
+ ---
11
+
12
+
13
+ # bert-model-disaster-tweets-classification
14
+
15
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Natural-Language-Processing-with-Disaster-Tweets dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Accuracy: 0.82
18
+ - F1 Score: 0.82
19
+
20
+ ## Model description
21
+
22
+ Load BertForSequenceClassification, the pretrained BERT model with a single linear classification layer on top, using an optimizer : incorporates weight decay, which is a regularization technique that helps prevent overfitting during training.
23
+
24
+ ## Intended uses & limitations
25
+
26
+ Use to classify if a tweet represents a disaster or not.
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 2e-05
38
+ - train_batch_size: 32
39
+ - eval_batch_size: 32
40
+ - seed: 42
41
+ - optimizer: Adam with epsilon = 1e-8.
42
+ - lr_scheduler_type: linear
43
+ - num_epochs: 3
44
+
45
+ ### Training results
46
+
47
+ | Epoch | Average training loss | Training epoch | Accuracy | F1 |
48
+ |:-----:|:---------------------:|:---------------:|:--------:|:----:|
49
+ | 1.0 | 0.47 | 0:00:49 | 0.82 | 0.82 |
50
+ | 2.0 | 0.36 | 0:00:36 | 0.82 | 0.82 |
51
+ | 3.0 | 0.29 | 0:00:51 | 0.82 | 0.82 |
52
+
53
+
54
+ ### Framework versions
55
+
56
+ - Transformers 4.28.1
57
+ - Pytorch 2.0.0+cu118
58
+ - Datasets 2.12.0
59
+ - Tokenizers 0.13.3