Delete text_summary.py
Browse files- text_summary.py +0 -248
text_summary.py
DELETED
@@ -1,248 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import torch.optim as optim
|
5 |
-
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
|
6 |
-
from torch import cuda
|
7 |
-
from torch.utils.data import Dataset, DataLoader
|
8 |
-
from transformers import GPT2LMHeadModel,GPT2Tokenizer, GPT2Config
|
9 |
-
import argparse
|
10 |
-
|
11 |
-
|
12 |
-
#from google.colab import drive
|
13 |
-
#drive.mount('/content/drive')
|
14 |
-
|
15 |
-
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
|
16 |
-
|
17 |
-
#!pip install datasets
|
18 |
-
|
19 |
-
'''
|
20 |
-
from datasets import load_dataset
|
21 |
-
dataset1 = load_dataset("dair-ai/emotion")
|
22 |
-
for split, data in dataset1.items():
|
23 |
-
data.to_csv(f"emotion_{split}.csv", index = None)
|
24 |
-
'''
|
25 |
-
|
26 |
-
def read_reviews(data_path):
|
27 |
-
dataset = pd.DataFrame()
|
28 |
-
for path in data_path:
|
29 |
-
df = pd.read_csv("/content/drive/MyDrive/Text_summary_datasets/"+ path)
|
30 |
-
# Remove null values:
|
31 |
-
df.dropna(inplace=True)
|
32 |
-
# Convert label:
|
33 |
-
if path == "emotion_train.csv":
|
34 |
-
class_mapping = {0:'sad', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
|
35 |
-
# Replace the numerical/categorical values with words using the mapping
|
36 |
-
df['Summary'] = df['label'].replace(class_mapping)
|
37 |
-
df['training'] = df['text'] + 'TL;DR' + df['Summary']
|
38 |
-
df['Text'] = df['text']
|
39 |
-
if path == "amazon_review.csv":
|
40 |
-
df['training'] = df['Text'] + 'TL;DR' + df['Summary']
|
41 |
-
if path == "kindle_review.csv":
|
42 |
-
df['training'] = df['reviewText'] + 'TL;DR' + df['summary']
|
43 |
-
df['Text'] = df['reviewText']
|
44 |
-
df['Summary'] = df['summary']
|
45 |
-
if path == "tweet_train.csv":
|
46 |
-
df['training'] = df['content'] + 'TL;DR' + df['c_summary']
|
47 |
-
df['Text'] = df['content']
|
48 |
-
df['Summary'] = df['c_summary']
|
49 |
-
|
50 |
-
sampled_data = df.sample(n=1250, random_state=42)
|
51 |
-
dataset = dataset.append(sampled_data, ignore_index=True)
|
52 |
-
|
53 |
-
# Combining the two columns review and summary:
|
54 |
-
#df['training'] = df['text'] + 'TL;DR' + df['Summary']
|
55 |
-
dataset = dataset[['Summary','Text','training']]
|
56 |
-
return dataset
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
#reviews.head(1800)
|
61 |
-
|
62 |
-
class GPT2ReviewDataset(Dataset):
|
63 |
-
def __init__(self, tokenizer, reviews, max_len):
|
64 |
-
self.max_len = max_len
|
65 |
-
self.tokenizer = tokenizer
|
66 |
-
self.eos = self.tokenizer.eos_token
|
67 |
-
self.eos_id = self.tokenizer.eos_token_id
|
68 |
-
self.reviews = reviews
|
69 |
-
self.result = []
|
70 |
-
|
71 |
-
for review in self.reviews:
|
72 |
-
# Encode the text using tokenizer.encode(). We add EOS at the end
|
73 |
-
tokenized = self.tokenizer.encode(review + self.eos, max_length = 512, truncation = True)
|
74 |
-
|
75 |
-
# Padding/truncating the encoded sequence to max_len
|
76 |
-
padded = self.pad_truncate(tokenized)
|
77 |
-
|
78 |
-
# Creating a tensor and adding to the result
|
79 |
-
self.result.append(torch.tensor(padded))
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
def __len__(self):
|
84 |
-
return len(self.result)
|
85 |
-
|
86 |
-
|
87 |
-
def __getitem__(self, item):
|
88 |
-
return self.result[item]
|
89 |
-
|
90 |
-
def pad_truncate(self, name):
|
91 |
-
extra_length = 4
|
92 |
-
name_length = len(name) - extra_length
|
93 |
-
if name_length < self.max_len:
|
94 |
-
difference = self.max_len - name_length
|
95 |
-
result = name + [self.eos_id] * difference
|
96 |
-
elif name_length > self.max_len:
|
97 |
-
result = name[:self.max_len + 3]+[self.eos_id]
|
98 |
-
else:
|
99 |
-
result = name
|
100 |
-
return result
|
101 |
-
|
102 |
-
def train(model, optimizer, dl, epochs):
|
103 |
-
for epoch in range(epochs):
|
104 |
-
for idx, batch in enumerate(dl):
|
105 |
-
print(idx)
|
106 |
-
with torch.set_grad_enabled(True):
|
107 |
-
optimizer.zero_grad()
|
108 |
-
batch = batch.to(device)
|
109 |
-
output = model(batch, labels=batch)
|
110 |
-
loss = output[0]
|
111 |
-
loss.backward()
|
112 |
-
optimizer.step()
|
113 |
-
torch.save(model, '/content/drive/MyDrive/Text_summary_datasets/text_summary_4sets.pth')
|
114 |
-
if idx % 50 == 0:
|
115 |
-
print("loss: %f, %d"%(loss, idx))
|
116 |
-
|
117 |
-
def main():
|
118 |
-
data_path = ["emotion_train.csv","kindle_review.csv", "amazon_review.csv", "tweet_train.csv"]
|
119 |
-
reviews = read_reviews(data_path)
|
120 |
-
|
121 |
-
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
122 |
-
#model = torch.load('/content/drive/MyDrive/text_summary.pth')
|
123 |
-
config = GPT2Config.from_pretrained("gpt2")
|
124 |
-
model.config = config
|
125 |
-
|
126 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
127 |
-
extra_length = len(tokenizer.encode(" TL;DR "))
|
128 |
-
max_length = 250
|
129 |
-
optimizer = optim.Adam(params = model.parameters(), lr=3e-4)
|
130 |
-
|
131 |
-
dataset = GPT2ReviewDataset(tokenizer, reviews['training'], max_len = max_length)
|
132 |
-
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
133 |
-
|
134 |
-
train(model=model, optimizer=optimizer, dl=dataloader, epochs=3)
|
135 |
-
|
136 |
-
torch.save(model, '/content/drive/MyDrive/Text_summary_datasets/text_summary_4sets.pth')
|
137 |
-
|
138 |
-
|
139 |
-
def topk(probs, n=9):
|
140 |
-
# The scores are initially softmaxed to convert to probabilities
|
141 |
-
probs = torch.softmax(probs, dim= -1)
|
142 |
-
|
143 |
-
# PyTorch has its own topk method, which we use here
|
144 |
-
tokensProb, topIx = torch.topk(probs, k=n)
|
145 |
-
|
146 |
-
# The new selection pool (9 choices) is normalized
|
147 |
-
tokensProb = tokensProb / torch.sum(tokensProb)
|
148 |
-
|
149 |
-
# Send to CPU for numpy handling
|
150 |
-
tokensProb = tokensProb.cpu().detach().numpy()
|
151 |
-
|
152 |
-
# Make a random choice from the pool based on the new prob distribution
|
153 |
-
choice = np.random.choice(n, 1, p = tokensProb)#[np.argmax(tokensProb)]#
|
154 |
-
tokenId = topIx[choice][0]
|
155 |
-
|
156 |
-
return int(tokenId)
|
157 |
-
|
158 |
-
def model_infer(model, tokenizer, review, max_length=30):
|
159 |
-
# Preprocess the init token (task designator)
|
160 |
-
review_encoded = tokenizer.encode(review)
|
161 |
-
result = review_encoded
|
162 |
-
initial_input = torch.tensor(review_encoded).unsqueeze(0).to(device)
|
163 |
-
|
164 |
-
with torch.set_grad_enabled(False):
|
165 |
-
# Feed the init token to the model
|
166 |
-
output = model(initial_input)
|
167 |
-
|
168 |
-
# Flatten the logits at the final time step
|
169 |
-
logits = output.logits[0,-1]
|
170 |
-
|
171 |
-
# Make a top-k choice and append to the result
|
172 |
-
#choices = [topk(logits) for i in range(5)]
|
173 |
-
choices = topk(logits)
|
174 |
-
result.append(choices)
|
175 |
-
|
176 |
-
# For max_length times:
|
177 |
-
for _ in range(max_length):
|
178 |
-
# Feed the current sequence to the model and make a choice
|
179 |
-
input = torch.tensor(result).unsqueeze(0).to(device)
|
180 |
-
output = model(input)
|
181 |
-
logits = output.logits[0,-1]
|
182 |
-
res_id = topk(logits)
|
183 |
-
|
184 |
-
# If the chosen token is EOS, return the result
|
185 |
-
if res_id == tokenizer.eos_token_id:
|
186 |
-
return tokenizer.decode(result)
|
187 |
-
else: # Append to the sequence
|
188 |
-
result.append(res_id)
|
189 |
-
|
190 |
-
# IF no EOS is generated, return after the max_len
|
191 |
-
return tokenizer.decode(result)
|
192 |
-
|
193 |
-
def interface(input):
|
194 |
-
dataset_sample = False
|
195 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
196 |
-
model = torch.load('text_summary_4sets_2_550.pth', map_location=torch.device('mps'))
|
197 |
-
if dataset_sample:
|
198 |
-
sample_reviews = reviews['training'].sample(n=1, random_state=1)
|
199 |
-
summary = [model_infer(model, tokenizer, review).strip() for review in sample_reviews]
|
200 |
-
|
201 |
-
else:
|
202 |
-
result_text = []
|
203 |
-
for i in range(6):
|
204 |
-
summary = model_infer(model, tokenizer, input+"TL;DR").strip()
|
205 |
-
result_text.append(summary[len(input)+5:])
|
206 |
-
#print(sorted(result_text, key=len))
|
207 |
-
print("summary:", sorted(result_text, key=len)[3])
|
208 |
-
|
209 |
-
'''
|
210 |
-
|
211 |
-
|
212 |
-
sample = 'Today was a hard day. I woke up feeling anxious and stressed about a meeting I had at work. The meeting did not go as I had hoped and I left disappointed. I tried to focus on other things and stay positive, but it was hard. I spent most of the evening starving and eating junk food. Not the best way to deal with my emotions, but it’s something I’m working on. Hope tomorrow will be a better day.TL;DR'
|
213 |
-
|
214 |
-
summary = model_infer(model, tokenizer, sample).strip()
|
215 |
-
|
216 |
-
sample
|
217 |
-
|
218 |
-
summary[len(sample):]
|
219 |
-
|
220 |
-
sample = 'Today was much better than yesterday. I wake up feeling more rested and ready to tackle the day. I had a productive day at work and even managed to finish a project I was struggling with. After work, I met some friends for a yoga class and it was just what I needed to relax and unwind. We went out for dinner afterwards and had a really nice time. Overall, it was a much better day than yesterday and I feel more positive about things.TL;DR'
|
221 |
-
|
222 |
-
summary = model_infer(model, tokenizer, sample).strip()
|
223 |
-
|
224 |
-
summary[len(sample):]
|
225 |
-
|
226 |
-
sample = 'Today was a beautiful day. I had a good night’s sleep and was ready to start the day. I went to work and had a productive morning. I even managed to finish a project I’d been working on for weeks. After work, I ran to clear my head. It was a beautiful day and the weather was perfect for it. I came home and cooked dinner with my partner. We had a nice conversation over dinner and then spent the evening watching a movie. Overall, it was a pretty relaxing and enjoyable day.'
|
227 |
-
|
228 |
-
summary = model_infer(model, tokenizer, sample + 'TL;DR').strip()
|
229 |
-
summary[len(sample)+5:]
|
230 |
-
'''
|
231 |
-
|
232 |
-
if __name__ == '__main__':
|
233 |
-
parser = argparse.ArgumentParser(description= "parser")
|
234 |
-
|
235 |
-
# Add command-line arguments
|
236 |
-
parser.add_argument("--train", action="store_true", help="Train the model")
|
237 |
-
parser.add_argument("--infer", type=str, help="Interact with the model")
|
238 |
-
|
239 |
-
# Parse the command-line arguments
|
240 |
-
args = parser.parse_args()
|
241 |
-
|
242 |
-
# Check which argument was provided and call the corresponding function
|
243 |
-
if args.train:
|
244 |
-
main()
|
245 |
-
elif args.infer:
|
246 |
-
interface(args.infer)
|
247 |
-
else:
|
248 |
-
print("No valid option provided. Use --train or --infer.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|