Upload 2 files
Browse files- text_summary.py +245 -0
- text_summary_4sets_2_550.pth +3 -0
text_summary.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.optim as optim
|
5 |
+
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
|
6 |
+
from torch import cuda
|
7 |
+
from transformers import GPT2LMHeadModel,GPT2Tokenizer, GPT2Config
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
|
11 |
+
#from google.colab import drive
|
12 |
+
#drive.mount('/content/drive')
|
13 |
+
|
14 |
+
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
|
15 |
+
|
16 |
+
#!pip install datasets
|
17 |
+
|
18 |
+
'''
|
19 |
+
from datasets import load_dataset
|
20 |
+
dataset1 = load_dataset("dair-ai/emotion")
|
21 |
+
for split, data in dataset1.items():
|
22 |
+
data.to_csv(f"emotion_{split}.csv", index = None)
|
23 |
+
'''
|
24 |
+
|
25 |
+
def read_reviews(data_path):
|
26 |
+
dataset = pd.DataFrame()
|
27 |
+
for path in data_path:
|
28 |
+
df = pd.read_csv("/content/drive/MyDrive/Text_summary_datasets/"+ path)
|
29 |
+
# Remove null values:
|
30 |
+
df.dropna(inplace=True)
|
31 |
+
# Convert label:
|
32 |
+
if path == "emotion_train.csv":
|
33 |
+
class_mapping = {0:'sad', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
|
34 |
+
# Replace the numerical/categorical values with words using the mapping
|
35 |
+
df['Summary'] = df['label'].replace(class_mapping)
|
36 |
+
df['training'] = df['text'] + 'TL;DR' + df['Summary']
|
37 |
+
df['Text'] = df['text']
|
38 |
+
if path == "amazon_review.csv":
|
39 |
+
df['training'] = df['Text'] + 'TL;DR' + df['Summary']
|
40 |
+
if path == "kindle_review.csv":
|
41 |
+
df['training'] = df['reviewText'] + 'TL;DR' + df['summary']
|
42 |
+
df['Text'] = df['reviewText']
|
43 |
+
df['Summary'] = df['summary']
|
44 |
+
if path == "tweet_train.csv":
|
45 |
+
df['training'] = df['content'] + 'TL;DR' + df['c_summary']
|
46 |
+
df['Text'] = df['content']
|
47 |
+
df['Summary'] = df['c_summary']
|
48 |
+
|
49 |
+
sampled_data = df.sample(n=1250, random_state=42)
|
50 |
+
dataset = dataset.append(sampled_data, ignore_index=True)
|
51 |
+
|
52 |
+
# Combining the two columns review and summary:
|
53 |
+
#df['training'] = df['text'] + 'TL;DR' + df['Summary']
|
54 |
+
dataset = dataset[['Summary','Text','training']]
|
55 |
+
return dataset
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
#reviews.head(1800)
|
60 |
+
|
61 |
+
class GPT2ReviewDataset(Dataset):
|
62 |
+
def __init__(self, tokenizer, reviews, max_len):
|
63 |
+
self.max_len = max_len
|
64 |
+
self.tokenizer = tokenizer
|
65 |
+
self.eos = self.tokenizer.eos_token
|
66 |
+
self.eos_id = self.tokenizer.eos_token_id
|
67 |
+
self.reviews = reviews
|
68 |
+
self.result = []
|
69 |
+
|
70 |
+
for review in self.reviews:
|
71 |
+
# Encode the text using tokenizer.encode(). We add EOS at the end
|
72 |
+
tokenized = self.tokenizer.encode(review + self.eos, max_length = 512, truncation = True)
|
73 |
+
|
74 |
+
# Padding/truncating the encoded sequence to max_len
|
75 |
+
padded = self.pad_truncate(tokenized)
|
76 |
+
|
77 |
+
# Creating a tensor and adding to the result
|
78 |
+
self.result.append(torch.tensor(padded))
|
79 |
+
|
80 |
+
def __len__(self):
|
81 |
+
return len(self.result)
|
82 |
+
|
83 |
+
|
84 |
+
def __getitem__(self, item):
|
85 |
+
return self.result[item]
|
86 |
+
|
87 |
+
def pad_truncate(self, name):
|
88 |
+
extra_length = 4
|
89 |
+
name_length = len(name) - extra_length
|
90 |
+
if name_length < self.max_len:
|
91 |
+
difference = self.max_len - name_length
|
92 |
+
result = name + [self.eos_id] * difference
|
93 |
+
elif name_length > self.max_len:
|
94 |
+
result = name[:self.max_len + 3]+[self.eos_id]
|
95 |
+
else:
|
96 |
+
result = name
|
97 |
+
return result
|
98 |
+
|
99 |
+
def train(model, optimizer, dl, epochs):
|
100 |
+
for epoch in range(epochs):
|
101 |
+
for idx, batch in enumerate(dl):
|
102 |
+
print(idx)
|
103 |
+
with torch.set_grad_enabled(True):
|
104 |
+
optimizer.zero_grad()
|
105 |
+
batch = batch.to(device)
|
106 |
+
output = model(batch, labels=batch)
|
107 |
+
loss = output[0]
|
108 |
+
loss.backward()
|
109 |
+
optimizer.step()
|
110 |
+
torch.save(model, '/content/drive/MyDrive/Text_summary_datasets/text_summary_4sets.pth')
|
111 |
+
if idx % 50 == 0:
|
112 |
+
print("loss: %f, %d"%(loss, idx))
|
113 |
+
|
114 |
+
def main():
|
115 |
+
data_path = ["emotion_train.csv","kindle_review.csv", "amazon_review.csv", "tweet_train.csv"]
|
116 |
+
reviews = read_reviews(data_path)
|
117 |
+
|
118 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
119 |
+
#model = torch.load('/content/drive/MyDrive/text_summary.pth')
|
120 |
+
config = GPT2Config.from_pretrained("gpt2")
|
121 |
+
model.config = config
|
122 |
+
|
123 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
124 |
+
extra_length = len(tokenizer.encode(" TL;DR "))
|
125 |
+
max_length = 250
|
126 |
+
optimizer = optim.Adam(params = model.parameters(), lr=3e-4)
|
127 |
+
|
128 |
+
dataset = GPT2ReviewDataset(tokenizer, reviews['training'], max_len = max_length)
|
129 |
+
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
130 |
+
|
131 |
+
train(model=model, optimizer=optimizer, dl=dataloader, epochs=3)
|
132 |
+
|
133 |
+
torch.save(model, '/content/drive/MyDrive/Text_summary_datasets/text_summary_4sets.pth')
|
134 |
+
|
135 |
+
|
136 |
+
def topk(probs, n=9):
|
137 |
+
# The scores are initially softmaxed to convert to probabilities
|
138 |
+
probs = torch.softmax(probs, dim= -1)
|
139 |
+
|
140 |
+
# PyTorch has its own topk method, which we use here
|
141 |
+
tokensProb, topIx = torch.topk(probs, k=n)
|
142 |
+
|
143 |
+
# The new selection pool (9 choices) is normalized
|
144 |
+
tokensProb = tokensProb / torch.sum(tokensProb)
|
145 |
+
|
146 |
+
# Send to CPU for numpy handling
|
147 |
+
tokensProb = tokensProb.cpu().detach().numpy()
|
148 |
+
|
149 |
+
# Make a random choice from the pool based on the new prob distribution
|
150 |
+
choice = np.random.choice(n, 1, p = tokensProb)#[np.argmax(tokensProb)]#
|
151 |
+
tokenId = topIx[choice][0]
|
152 |
+
|
153 |
+
return int(tokenId)
|
154 |
+
|
155 |
+
def model_infer(model, tokenizer, review, max_length=30):
|
156 |
+
# Preprocess the init token (task designator)
|
157 |
+
review_encoded = tokenizer.encode(review)
|
158 |
+
result = review_encoded
|
159 |
+
initial_input = torch.tensor(review_encoded).unsqueeze(0).to(device)
|
160 |
+
|
161 |
+
with torch.set_grad_enabled(False):
|
162 |
+
# Feed the init token to the model
|
163 |
+
output = model(initial_input)
|
164 |
+
|
165 |
+
# Flatten the logits at the final time step
|
166 |
+
logits = output.logits[0,-1]
|
167 |
+
|
168 |
+
# Make a top-k choice and append to the result
|
169 |
+
#choices = [topk(logits) for i in range(5)]
|
170 |
+
choices = topk(logits)
|
171 |
+
result.append(choices)
|
172 |
+
|
173 |
+
# For max_length times:
|
174 |
+
for _ in range(max_length):
|
175 |
+
# Feed the current sequence to the model and make a choice
|
176 |
+
input = torch.tensor(result).unsqueeze(0).to(device)
|
177 |
+
output = model(input)
|
178 |
+
logits = output.logits[0,-1]
|
179 |
+
res_id = topk(logits)
|
180 |
+
|
181 |
+
# If the chosen token is EOS, return the result
|
182 |
+
if res_id == tokenizer.eos_token_id:
|
183 |
+
return tokenizer.decode(result)
|
184 |
+
else: # Append to the sequence
|
185 |
+
result.append(res_id)
|
186 |
+
|
187 |
+
# IF no EOS is generated, return after the max_len
|
188 |
+
return tokenizer.decode(result)
|
189 |
+
|
190 |
+
def interface(input):
|
191 |
+
dataset_sample = False
|
192 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
193 |
+
model = torch.load('text_summary_4sets_2_550.pth', map_location=torch.device('mps'))
|
194 |
+
if dataset_sample:
|
195 |
+
sample_reviews = reviews['training'].sample(n=1, random_state=1)
|
196 |
+
summary = [model_infer(model, tokenizer, review).strip() for review in sample_reviews]
|
197 |
+
|
198 |
+
else:
|
199 |
+
result_text = []
|
200 |
+
for i in range(6):
|
201 |
+
summary = model_infer(model, tokenizer, input+"TL;DR").strip()
|
202 |
+
result_text.append(summary[len(input)+5:])
|
203 |
+
#print(sorted(result_text, key=len))
|
204 |
+
print("summary:", sorted(result_text, key=len)[3])
|
205 |
+
|
206 |
+
'''
|
207 |
+
|
208 |
+
|
209 |
+
sample = 'Today was a hard day. I woke up feeling anxious and stressed about a meeting I had at work. The meeting did not go as I had hoped and I left disappointed. I tried to focus on other things and stay positive, but it was hard. I spent most of the evening starving and eating junk food. Not the best way to deal with my emotions, but it’s something I’m working on. Hope tomorrow will be a better day.TL;DR'
|
210 |
+
|
211 |
+
summary = model_infer(model, tokenizer, sample).strip()
|
212 |
+
|
213 |
+
sample
|
214 |
+
|
215 |
+
summary[len(sample):]
|
216 |
+
|
217 |
+
sample = 'Today was much better than yesterday. I wake up feeling more rested and ready to tackle the day. I had a productive day at work and even managed to finish a project I was struggling with. After work, I met some friends for a yoga class and it was just what I needed to relax and unwind. We went out for dinner afterwards and had a really nice time. Overall, it was a much better day than yesterday and I feel more positive about things.TL;DR'
|
218 |
+
|
219 |
+
summary = model_infer(model, tokenizer, sample).strip()
|
220 |
+
|
221 |
+
summary[len(sample):]
|
222 |
+
|
223 |
+
sample = 'Today was a beautiful day. I had a good night’s sleep and was ready to start the day. I went to work and had a productive morning. I even managed to finish a project I’d been working on for weeks. After work, I ran to clear my head. It was a beautiful day and the weather was perfect for it. I came home and cooked dinner with my partner. We had a nice conversation over dinner and then spent the evening watching a movie. Overall, it was a pretty relaxing and enjoyable day.'
|
224 |
+
|
225 |
+
summary = model_infer(model, tokenizer, sample + 'TL;DR').strip()
|
226 |
+
summary[len(sample)+5:]
|
227 |
+
'''
|
228 |
+
|
229 |
+
if __name__ == '__main__':
|
230 |
+
parser = argparse.ArgumentParser(description= "parser")
|
231 |
+
|
232 |
+
# Add command-line arguments
|
233 |
+
parser.add_argument("--train", action="store_true", help="Train the model")
|
234 |
+
parser.add_argument("--infer", type=str, help="Interact with the model")
|
235 |
+
|
236 |
+
# Parse the command-line arguments
|
237 |
+
args = parser.parse_args()
|
238 |
+
|
239 |
+
# Check which argument was provided and call the corresponding function
|
240 |
+
if args.train:
|
241 |
+
main()
|
242 |
+
elif args.infer:
|
243 |
+
interface(args.infer)
|
244 |
+
else:
|
245 |
+
print("No valid option provided. Use --train or --infer.")
|
text_summary_4sets_2_550.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02371a7ea71a71db6526fe99a4388877cd54d94652e770b922031687ddaf9169
|
3 |
+
size 510431223
|