Lin0He commited on
Commit
1da9760
·
1 Parent(s): 0954ad4

Upload handler.py

Browse files
Files changed (1) hide show
  1. handler.py +93 -0
handler.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ # upload model
3
+ import torch
4
+ from transformers import GPT2LMHeadModel,GPT2Tokenizer, GPT2Config
5
+
6
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
7
+ model = torch.load('text_summary_4sets_2_550.pth', map_location=torch.device('mps'))
8
+
9
+ model.push_to_hub(repo_name="text-summary-gpt2-short", repo_id="Lin0He/text-summary-gpt2-short")
10
+ tokenizer.push_to_hub(repo_name="text-summary-gpt2-short", repo_id="Lin0He/text-summary-gpt2-short")
11
+ '''
12
+ import torch
13
+ from typing import Dict, List, Any
14
+ from transformers import pipeline, AutoModel, AutoTokenizer
15
+
16
+ def topk(probs, n=9):
17
+ # The scores are initially softmaxed to convert to probabilities
18
+ probs = torch.softmax(probs, dim= -1)
19
+ # PyTorch has its own topk method, which we use here
20
+ tokensProb, topIx = torch.topk(probs, k=n)
21
+ # The new selection pool (9 choices) is normalized
22
+ tokensProb = tokensProb / torch.sum(tokensProb)
23
+ # Send to CPU for numpy handling
24
+ tokensProb = tokensProb.cpu().detach().numpy()
25
+ # Make a random choice from the pool based on the new prob distribution
26
+ choice = np.random.choice(n, 1, p = tokensProb)#[np.argmax(tokensProb)]#
27
+ tokenId = topIx[choice][0]
28
+ return int(tokenId)
29
+
30
+ def model_infer(model, tokenizer, review, max_length=60):
31
+ # Preprocess the init token (task designator)
32
+ review_encoded = tokenizer.encode(review)
33
+ result = review_encoded
34
+ initial_input = torch.tensor(review_encoded).unsqueeze(0).to(device)
35
+
36
+ with torch.set_grad_enabled(False):
37
+ # Feed the init token to the model
38
+ output = model(initial_input)
39
+
40
+ # Flatten the logits at the final time step
41
+ logits = output.logits[0,-1]
42
+
43
+ # Make a top-k choice and append to the result
44
+ #choices = [topk(logits) for i in range(5)]
45
+ choices = topk(logits)
46
+ result.append(choices)
47
+
48
+ # For max_length times:
49
+ for _ in range(max_length):
50
+ # Feed the current sequence to the model and make a choice
51
+ input = torch.tensor(result).unsqueeze(0).to(device)
52
+ output = model(input)
53
+ logits = output.logits[0,-1]
54
+ res_id = topk(logits)
55
+
56
+ # If the chosen token is EOS, return the result
57
+ if res_id == tokenizer.eos_token_id:
58
+ return tokenizer.decode(result)
59
+ else: # Append to the sequence
60
+ result.append(res_id)
61
+
62
+ # IF no EOS is generated, return after the max_len
63
+ return tokenizer.decode(result)
64
+
65
+ def predict(text, model, tokenizer):
66
+ result_text = []
67
+ for i in range(6):
68
+ summary = model_infer(model, tokenizer, input+"TL;DR").strip()
69
+ result_text.append(summary[len(input)+5:])
70
+ return sorted(result_text, key=len)[3]
71
+ #print("summary:", sorted(result_text, key=len)[3])
72
+
73
+ class EndpointHandler():
74
+ def __init__(self, path=""):
75
+ # load model and tokenizer from path
76
+ self.tokenizer = AutoTokenizer.from_pretrained("Lin0He/text-summary-gpt2-short")
77
+ self.model = AutoModel.from_pretrained("Lin0He/text-summary-gpt2-short")
78
+
79
+
80
+ def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
81
+ # process input
82
+ inputs = data.pop("inputs", data)
83
+ # process input text
84
+ prediction = predict(inputs, self.model, self.tokenizer)
85
+ return prediction #{"generated_text": prediction}
86
+
87
+
88
+
89
+ '''
90
+ predictor = pipeline("summarization", model = model, tokenizer = tokenizer)
91
+ result = predictor("Input text for prediction")
92
+ print(result)
93
+ '''