Upload handler.py
Browse files- handler.py +93 -0
handler.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
# upload model
|
3 |
+
import torch
|
4 |
+
from transformers import GPT2LMHeadModel,GPT2Tokenizer, GPT2Config
|
5 |
+
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
7 |
+
model = torch.load('text_summary_4sets_2_550.pth', map_location=torch.device('mps'))
|
8 |
+
|
9 |
+
model.push_to_hub(repo_name="text-summary-gpt2-short", repo_id="Lin0He/text-summary-gpt2-short")
|
10 |
+
tokenizer.push_to_hub(repo_name="text-summary-gpt2-short", repo_id="Lin0He/text-summary-gpt2-short")
|
11 |
+
'''
|
12 |
+
import torch
|
13 |
+
from typing import Dict, List, Any
|
14 |
+
from transformers import pipeline, AutoModel, AutoTokenizer
|
15 |
+
|
16 |
+
def topk(probs, n=9):
|
17 |
+
# The scores are initially softmaxed to convert to probabilities
|
18 |
+
probs = torch.softmax(probs, dim= -1)
|
19 |
+
# PyTorch has its own topk method, which we use here
|
20 |
+
tokensProb, topIx = torch.topk(probs, k=n)
|
21 |
+
# The new selection pool (9 choices) is normalized
|
22 |
+
tokensProb = tokensProb / torch.sum(tokensProb)
|
23 |
+
# Send to CPU for numpy handling
|
24 |
+
tokensProb = tokensProb.cpu().detach().numpy()
|
25 |
+
# Make a random choice from the pool based on the new prob distribution
|
26 |
+
choice = np.random.choice(n, 1, p = tokensProb)#[np.argmax(tokensProb)]#
|
27 |
+
tokenId = topIx[choice][0]
|
28 |
+
return int(tokenId)
|
29 |
+
|
30 |
+
def model_infer(model, tokenizer, review, max_length=60):
|
31 |
+
# Preprocess the init token (task designator)
|
32 |
+
review_encoded = tokenizer.encode(review)
|
33 |
+
result = review_encoded
|
34 |
+
initial_input = torch.tensor(review_encoded).unsqueeze(0).to(device)
|
35 |
+
|
36 |
+
with torch.set_grad_enabled(False):
|
37 |
+
# Feed the init token to the model
|
38 |
+
output = model(initial_input)
|
39 |
+
|
40 |
+
# Flatten the logits at the final time step
|
41 |
+
logits = output.logits[0,-1]
|
42 |
+
|
43 |
+
# Make a top-k choice and append to the result
|
44 |
+
#choices = [topk(logits) for i in range(5)]
|
45 |
+
choices = topk(logits)
|
46 |
+
result.append(choices)
|
47 |
+
|
48 |
+
# For max_length times:
|
49 |
+
for _ in range(max_length):
|
50 |
+
# Feed the current sequence to the model and make a choice
|
51 |
+
input = torch.tensor(result).unsqueeze(0).to(device)
|
52 |
+
output = model(input)
|
53 |
+
logits = output.logits[0,-1]
|
54 |
+
res_id = topk(logits)
|
55 |
+
|
56 |
+
# If the chosen token is EOS, return the result
|
57 |
+
if res_id == tokenizer.eos_token_id:
|
58 |
+
return tokenizer.decode(result)
|
59 |
+
else: # Append to the sequence
|
60 |
+
result.append(res_id)
|
61 |
+
|
62 |
+
# IF no EOS is generated, return after the max_len
|
63 |
+
return tokenizer.decode(result)
|
64 |
+
|
65 |
+
def predict(text, model, tokenizer):
|
66 |
+
result_text = []
|
67 |
+
for i in range(6):
|
68 |
+
summary = model_infer(model, tokenizer, input+"TL;DR").strip()
|
69 |
+
result_text.append(summary[len(input)+5:])
|
70 |
+
return sorted(result_text, key=len)[3]
|
71 |
+
#print("summary:", sorted(result_text, key=len)[3])
|
72 |
+
|
73 |
+
class EndpointHandler():
|
74 |
+
def __init__(self, path=""):
|
75 |
+
# load model and tokenizer from path
|
76 |
+
self.tokenizer = AutoTokenizer.from_pretrained("Lin0He/text-summary-gpt2-short")
|
77 |
+
self.model = AutoModel.from_pretrained("Lin0He/text-summary-gpt2-short")
|
78 |
+
|
79 |
+
|
80 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
81 |
+
# process input
|
82 |
+
inputs = data.pop("inputs", data)
|
83 |
+
# process input text
|
84 |
+
prediction = predict(inputs, self.model, self.tokenizer)
|
85 |
+
return prediction #{"generated_text": prediction}
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
'''
|
90 |
+
predictor = pipeline("summarization", model = model, tokenizer = tokenizer)
|
91 |
+
result = predictor("Input text for prediction")
|
92 |
+
print(result)
|
93 |
+
'''
|