Lin0He's picture
Update pipeline.py
11ee141 verified
raw
history blame
2.97 kB
import torch
import numpy as np
from typing import Dict, List, Any
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def topk(probs, n=9):
# The scores are initially softmaxed to convert to probabilities
probs = torch.softmax(probs, dim= -1)
# PyTorch has its own topk method, which we use here
tokensProb, topIx = torch.topk(probs, k=n)
# The new selection pool (9 choices) is normalized
tokensProb = tokensProb / torch.sum(tokensProb)
# Send to CPU for numpy handling
tokensProb = tokensProb.cpu().detach().numpy()
# Make a random choice from the pool based on the new prob distribution
choice = np.random.choice(n, 1, p = tokensProb)#[np.argmax(tokensProb)]#
tokenId = topIx[choice][0]
return int(tokenId)
def model_infer(model, tokenizer, review, max_length=10):
result_text = []
for i in range(6):
# Preprocess the init token (task designator)
review_encoded = tokenizer.encode(review)
result = review_encoded
initial_input = torch.tensor(review_encoded).unsqueeze(0).to(device)
with torch.set_grad_enabled(False):
# Feed the init token to the model
output = model(initial_input)
# Flatten the logits at the final time step
logits = output.logits[0,-1]
# Make a top-k choice and append to the result
#choices = [topk(logits) for i in range(5)]
choices = topk(logits)
result.append(choices)
# For max_length times:
for _ in range(max_length):
# Feed the current sequence to the model and make a choice
input = torch.tensor(result).unsqueeze(0).to(device)
output = model(input)
logits = output.logits[0,-1]
res_id = topk(logits)
# If the chosen token is EOS, return the result
if res_id == tokenizer.eos_token_id:
result_text.append(tokenizer.decode(result)[len(review):])
break
else: # Append to the sequence
result.append(res_id)
# IF no EOS is generated, return after the max_len
#result_text.append(tokenizer.decode(result))
return sorted(result_text, key=len)[4]
class PreTrainedPipeline():
def __init__(self, path=""):
# load model and tokenizer from path
self.tokenizer = AutoTokenizer.from_pretrained("Lin0He/text-summary-gpt2-short")
self.model = AutoModelForCausalLM.from_pretrained("Lin0He/text-summary-gpt2-short")
def __call__(self, data) -> Dict[str,str]:
# process input
inputs = data#.pop("inputs", data)
# process input text
prediction = model_infer(self.model, self.tokenizer, inputs+"TL;DR")
return {"text": prediction[len(inputs):]}