LijinDurairaj commited on
Commit
b9f27b1
·
verified ·
1 Parent(s): 2f3ac08

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76610d49a3428c31e880c2da318f539d99b865c1a0c2895d28643dc2450f4d35
3
+ size 4517152
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5d5187b1a4ca7bbb64304c1eb573b5dde1f6513d57143afdcb8431e388a6a5c
3
+ size 9063546
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b09bd9ada897acb73d1330edcbe55eaa8ec06ed2517a35847b590eef191fea77
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f4fe8e328be6e10e053e14666b2e571c45c73d9a8291556b08910e3da67b3e6
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "extra_special_tokens": {},
36
+ "legacy": false,
37
+ "model_max_length": 2048,
38
+ "pad_token": "</s>",
39
+ "padding_side": "right",
40
+ "sp_model_kwargs": {},
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
trainer_state.json ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.07635336336565626,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0015270672673131252,
13
+ "grad_norm": 1.7919381856918335,
14
+ "learning_rate": 0.00019980267284282717,
15
+ "loss": 2.5081,
16
+ "mean_token_accuracy": 0.5467605337500572,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.0030541345346262504,
21
+ "grad_norm": 2.8579838275909424,
22
+ "learning_rate": 0.0001992114701314478,
23
+ "loss": 1.7298,
24
+ "mean_token_accuracy": 0.6468371748924255,
25
+ "step": 20
26
+ },
27
+ {
28
+ "epoch": 0.004581201801939375,
29
+ "grad_norm": 1.7089707851409912,
30
+ "learning_rate": 0.0001982287250728689,
31
+ "loss": 1.1637,
32
+ "mean_token_accuracy": 0.7540688991546631,
33
+ "step": 30
34
+ },
35
+ {
36
+ "epoch": 0.006108269069252501,
37
+ "grad_norm": 0.9711195826530457,
38
+ "learning_rate": 0.0001968583161128631,
39
+ "loss": 0.8899,
40
+ "mean_token_accuracy": 0.8186888545751572,
41
+ "step": 40
42
+ },
43
+ {
44
+ "epoch": 0.007635336336565626,
45
+ "grad_norm": 0.8973957896232605,
46
+ "learning_rate": 0.00019510565162951537,
47
+ "loss": 0.8256,
48
+ "mean_token_accuracy": 0.8281645506620408,
49
+ "step": 50
50
+ },
51
+ {
52
+ "epoch": 0.00916240360387875,
53
+ "grad_norm": 0.9836689829826355,
54
+ "learning_rate": 0.00019297764858882514,
55
+ "loss": 0.754,
56
+ "mean_token_accuracy": 0.8368939191102982,
57
+ "step": 60
58
+ },
59
+ {
60
+ "epoch": 0.010689470871191877,
61
+ "grad_norm": 1.0244220495224,
62
+ "learning_rate": 0.00019048270524660196,
63
+ "loss": 0.7019,
64
+ "mean_token_accuracy": 0.8408633172512054,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.012216538138505002,
69
+ "grad_norm": 1.1119804382324219,
70
+ "learning_rate": 0.00018763066800438636,
71
+ "loss": 0.6498,
72
+ "mean_token_accuracy": 0.8521306127309799,
73
+ "step": 80
74
+ },
75
+ {
76
+ "epoch": 0.013743605405818126,
77
+ "grad_norm": 0.7104642987251282,
78
+ "learning_rate": 0.00018443279255020152,
79
+ "loss": 0.6679,
80
+ "mean_token_accuracy": 0.8470089048147201,
81
+ "step": 90
82
+ },
83
+ {
84
+ "epoch": 0.015270672673131251,
85
+ "grad_norm": 0.7890557646751404,
86
+ "learning_rate": 0.00018090169943749476,
87
+ "loss": 0.6581,
88
+ "mean_token_accuracy": 0.8512038260698318,
89
+ "step": 100
90
+ },
91
+ {
92
+ "epoch": 0.016797739940444378,
93
+ "grad_norm": 0.6953688859939575,
94
+ "learning_rate": 0.00017705132427757895,
95
+ "loss": 0.6358,
96
+ "mean_token_accuracy": 0.8534704208374023,
97
+ "step": 110
98
+ },
99
+ {
100
+ "epoch": 0.0183248072077575,
101
+ "grad_norm": 0.8764053583145142,
102
+ "learning_rate": 0.00017289686274214118,
103
+ "loss": 0.6124,
104
+ "mean_token_accuracy": 0.857587480545044,
105
+ "step": 120
106
+ },
107
+ {
108
+ "epoch": 0.019851874475070627,
109
+ "grad_norm": 0.8632748126983643,
110
+ "learning_rate": 0.00016845471059286887,
111
+ "loss": 0.6382,
112
+ "mean_token_accuracy": 0.8533297270536423,
113
+ "step": 130
114
+ },
115
+ {
116
+ "epoch": 0.021378941742383754,
117
+ "grad_norm": 0.9536803960800171,
118
+ "learning_rate": 0.000163742398974869,
119
+ "loss": 0.6252,
120
+ "mean_token_accuracy": 0.8563201695680618,
121
+ "step": 140
122
+ },
123
+ {
124
+ "epoch": 0.022906009009696877,
125
+ "grad_norm": 0.7280343174934387,
126
+ "learning_rate": 0.00015877852522924732,
127
+ "loss": 0.6105,
128
+ "mean_token_accuracy": 0.8567106693983078,
129
+ "step": 150
130
+ },
131
+ {
132
+ "epoch": 0.024433076277010003,
133
+ "grad_norm": 0.6883084177970886,
134
+ "learning_rate": 0.00015358267949789966,
135
+ "loss": 0.6134,
136
+ "mean_token_accuracy": 0.8576973646879196,
137
+ "step": 160
138
+ },
139
+ {
140
+ "epoch": 0.025960143544323126,
141
+ "grad_norm": 0.7537200450897217,
142
+ "learning_rate": 0.00014817536741017152,
143
+ "loss": 0.6182,
144
+ "mean_token_accuracy": 0.8572364389896393,
145
+ "step": 170
146
+ },
147
+ {
148
+ "epoch": 0.027487210811636253,
149
+ "grad_norm": 0.8564761877059937,
150
+ "learning_rate": 0.00014257792915650728,
151
+ "loss": 0.604,
152
+ "mean_token_accuracy": 0.8564972043037414,
153
+ "step": 180
154
+ },
155
+ {
156
+ "epoch": 0.02901427807894938,
157
+ "grad_norm": 0.9395449757575989,
158
+ "learning_rate": 0.00013681245526846783,
159
+ "loss": 0.6082,
160
+ "mean_token_accuracy": 0.8573319047689438,
161
+ "step": 190
162
+ },
163
+ {
164
+ "epoch": 0.030541345346262502,
165
+ "grad_norm": 1.4290846586227417,
166
+ "learning_rate": 0.00013090169943749476,
167
+ "loss": 0.5852,
168
+ "mean_token_accuracy": 0.859686890244484,
169
+ "step": 200
170
+ },
171
+ {
172
+ "epoch": 0.032068412613575625,
173
+ "grad_norm": 0.8474317789077759,
174
+ "learning_rate": 0.0001248689887164855,
175
+ "loss": 0.5912,
176
+ "mean_token_accuracy": 0.863548994064331,
177
+ "step": 210
178
+ },
179
+ {
180
+ "epoch": 0.033595479880888755,
181
+ "grad_norm": 0.8646250367164612,
182
+ "learning_rate": 0.00011873813145857249,
183
+ "loss": 0.5862,
184
+ "mean_token_accuracy": 0.861778911948204,
185
+ "step": 220
186
+ },
187
+ {
188
+ "epoch": 0.03512254714820188,
189
+ "grad_norm": 0.9591971635818481,
190
+ "learning_rate": 0.00011253332335643043,
191
+ "loss": 0.5656,
192
+ "mean_token_accuracy": 0.8678788006305694,
193
+ "step": 230
194
+ },
195
+ {
196
+ "epoch": 0.036649614415515,
197
+ "grad_norm": 0.7952109575271606,
198
+ "learning_rate": 0.00010627905195293135,
199
+ "loss": 0.581,
200
+ "mean_token_accuracy": 0.8648124188184738,
201
+ "step": 240
202
+ },
203
+ {
204
+ "epoch": 0.03817668168282813,
205
+ "grad_norm": 0.7618094086647034,
206
+ "learning_rate": 0.0001,
207
+ "loss": 0.576,
208
+ "mean_token_accuracy": 0.8639664649963379,
209
+ "step": 250
210
+ },
211
+ {
212
+ "epoch": 0.039703748950141254,
213
+ "grad_norm": 0.730375349521637,
214
+ "learning_rate": 9.372094804706867e-05,
215
+ "loss": 0.5915,
216
+ "mean_token_accuracy": 0.8597521275281906,
217
+ "step": 260
218
+ },
219
+ {
220
+ "epoch": 0.04123081621745438,
221
+ "grad_norm": 0.8533547520637512,
222
+ "learning_rate": 8.746667664356956e-05,
223
+ "loss": 0.5891,
224
+ "mean_token_accuracy": 0.859322988986969,
225
+ "step": 270
226
+ },
227
+ {
228
+ "epoch": 0.04275788348476751,
229
+ "grad_norm": 0.7875514626502991,
230
+ "learning_rate": 8.126186854142752e-05,
231
+ "loss": 0.5957,
232
+ "mean_token_accuracy": 0.8590130746364594,
233
+ "step": 280
234
+ },
235
+ {
236
+ "epoch": 0.04428495075208063,
237
+ "grad_norm": 0.8987193703651428,
238
+ "learning_rate": 7.513101128351454e-05,
239
+ "loss": 0.5997,
240
+ "mean_token_accuracy": 0.8575950294733048,
241
+ "step": 290
242
+ },
243
+ {
244
+ "epoch": 0.04581201801939375,
245
+ "grad_norm": 0.7341880202293396,
246
+ "learning_rate": 6.909830056250527e-05,
247
+ "loss": 0.5614,
248
+ "mean_token_accuracy": 0.8668889582157135,
249
+ "step": 300
250
+ },
251
+ {
252
+ "epoch": 0.047339085286706876,
253
+ "grad_norm": 0.7949256300926208,
254
+ "learning_rate": 6.318754473153221e-05,
255
+ "loss": 0.5936,
256
+ "mean_token_accuracy": 0.8569323867559433,
257
+ "step": 310
258
+ },
259
+ {
260
+ "epoch": 0.048866152554020006,
261
+ "grad_norm": 0.840946614742279,
262
+ "learning_rate": 5.7422070843492734e-05,
263
+ "loss": 0.5901,
264
+ "mean_token_accuracy": 0.863608232140541,
265
+ "step": 320
266
+ },
267
+ {
268
+ "epoch": 0.05039321982133313,
269
+ "grad_norm": 0.9876859188079834,
270
+ "learning_rate": 5.182463258982846e-05,
271
+ "loss": 0.5787,
272
+ "mean_token_accuracy": 0.8655537277460098,
273
+ "step": 330
274
+ },
275
+ {
276
+ "epoch": 0.05192028708864625,
277
+ "grad_norm": 0.7635581493377686,
278
+ "learning_rate": 4.6417320502100316e-05,
279
+ "loss": 0.6074,
280
+ "mean_token_accuracy": 0.8565149992704392,
281
+ "step": 340
282
+ },
283
+ {
284
+ "epoch": 0.05344735435595938,
285
+ "grad_norm": 0.7946358919143677,
286
+ "learning_rate": 4.12214747707527e-05,
287
+ "loss": 0.6015,
288
+ "mean_token_accuracy": 0.8584772288799286,
289
+ "step": 350
290
+ },
291
+ {
292
+ "epoch": 0.054974421623272506,
293
+ "grad_norm": 0.8052517771720886,
294
+ "learning_rate": 3.6257601025131026e-05,
295
+ "loss": 0.5552,
296
+ "mean_token_accuracy": 0.8673796206712723,
297
+ "step": 360
298
+ },
299
+ {
300
+ "epoch": 0.05650148889058563,
301
+ "grad_norm": 0.7466617226600647,
302
+ "learning_rate": 3.154528940713113e-05,
303
+ "loss": 0.5954,
304
+ "mean_token_accuracy": 0.8603360831737519,
305
+ "step": 370
306
+ },
307
+ {
308
+ "epoch": 0.05802855615789876,
309
+ "grad_norm": 0.7672128081321716,
310
+ "learning_rate": 2.7103137257858868e-05,
311
+ "loss": 0.5764,
312
+ "mean_token_accuracy": 0.8672617733478546,
313
+ "step": 380
314
+ },
315
+ {
316
+ "epoch": 0.05955562342521188,
317
+ "grad_norm": 0.7813590168952942,
318
+ "learning_rate": 2.2948675722421086e-05,
319
+ "loss": 0.5812,
320
+ "mean_token_accuracy": 0.8635528743267059,
321
+ "step": 390
322
+ },
323
+ {
324
+ "epoch": 0.061082690692525005,
325
+ "grad_norm": 0.7313287854194641,
326
+ "learning_rate": 1.9098300562505266e-05,
327
+ "loss": 0.5563,
328
+ "mean_token_accuracy": 0.8667043030261994,
329
+ "step": 400
330
+ },
331
+ {
332
+ "epoch": 0.06260975795983813,
333
+ "grad_norm": 0.9430689215660095,
334
+ "learning_rate": 1.5567207449798515e-05,
335
+ "loss": 0.5452,
336
+ "mean_token_accuracy": 0.871171161532402,
337
+ "step": 410
338
+ },
339
+ {
340
+ "epoch": 0.06413682522715125,
341
+ "grad_norm": 0.8281370401382446,
342
+ "learning_rate": 1.2369331995613665e-05,
343
+ "loss": 0.5809,
344
+ "mean_token_accuracy": 0.8636080652475357,
345
+ "step": 420
346
+ },
347
+ {
348
+ "epoch": 0.06566389249446439,
349
+ "grad_norm": 0.704873263835907,
350
+ "learning_rate": 9.517294753398064e-06,
351
+ "loss": 0.5975,
352
+ "mean_token_accuracy": 0.859060087800026,
353
+ "step": 430
354
+ },
355
+ {
356
+ "epoch": 0.06719095976177751,
357
+ "grad_norm": 0.8515197038650513,
358
+ "learning_rate": 7.022351411174866e-06,
359
+ "loss": 0.5867,
360
+ "mean_token_accuracy": 0.8638981640338897,
361
+ "step": 440
362
+ },
363
+ {
364
+ "epoch": 0.06871802702909063,
365
+ "grad_norm": 0.7860581874847412,
366
+ "learning_rate": 4.8943483704846475e-06,
367
+ "loss": 0.5802,
368
+ "mean_token_accuracy": 0.8683864206075669,
369
+ "step": 450
370
+ },
371
+ {
372
+ "epoch": 0.07024509429640376,
373
+ "grad_norm": 0.8138625621795654,
374
+ "learning_rate": 3.1416838871368924e-06,
375
+ "loss": 0.5918,
376
+ "mean_token_accuracy": 0.8596341729164123,
377
+ "step": 460
378
+ },
379
+ {
380
+ "epoch": 0.07177216156371688,
381
+ "grad_norm": 0.8401088714599609,
382
+ "learning_rate": 1.771274927131139e-06,
383
+ "loss": 0.6209,
384
+ "mean_token_accuracy": 0.8542895227670669,
385
+ "step": 470
386
+ },
387
+ {
388
+ "epoch": 0.07329922883103,
389
+ "grad_norm": 0.993623673915863,
390
+ "learning_rate": 7.885298685522235e-07,
391
+ "loss": 0.5791,
392
+ "mean_token_accuracy": 0.865888985991478,
393
+ "step": 480
394
+ },
395
+ {
396
+ "epoch": 0.07482629609834313,
397
+ "grad_norm": 0.8312510848045349,
398
+ "learning_rate": 1.973271571728441e-07,
399
+ "loss": 0.5615,
400
+ "mean_token_accuracy": 0.8679140955209732,
401
+ "step": 490
402
+ },
403
+ {
404
+ "epoch": 0.07635336336565626,
405
+ "grad_norm": 0.9254234433174133,
406
+ "learning_rate": 0.0,
407
+ "loss": 0.5822,
408
+ "mean_token_accuracy": 0.8632416158914566,
409
+ "step": 500
410
+ }
411
+ ],
412
+ "logging_steps": 10,
413
+ "max_steps": 500,
414
+ "num_input_tokens_seen": 0,
415
+ "num_train_epochs": 1,
416
+ "save_steps": 500,
417
+ "stateful_callbacks": {
418
+ "TrainerControl": {
419
+ "args": {
420
+ "should_epoch_stop": false,
421
+ "should_evaluate": false,
422
+ "should_log": false,
423
+ "should_save": true,
424
+ "should_training_stop": true
425
+ },
426
+ "attributes": {}
427
+ }
428
+ },
429
+ "total_flos": 5806155567955968.0,
430
+ "train_batch_size": 6,
431
+ "trial_name": null,
432
+ "trial_params": null
433
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f63a4c251fcbdb587f3b66634c5cb468d2c7d24605ad4cb770ca0e96a309489
3
+ size 5560