Add new SentenceTransformer model.
Browse files
README.md
CHANGED
|
@@ -30,7 +30,7 @@ Using this model becomes easy when you have [LightEmbed](https://pypi.org/projec
|
|
| 30 |
pip install -U light-embed
|
| 31 |
```
|
| 32 |
|
| 33 |
-
Then you can use the model like this:
|
| 34 |
|
| 35 |
```python
|
| 36 |
from light_embed import TextEmbedding
|
|
@@ -41,6 +41,17 @@ embeddings = model.encode(sentences)
|
|
| 41 |
print(embeddings)
|
| 42 |
```
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
## Citing & Authors
|
| 45 |
|
| 46 |
Binh Nguyen / [email protected]
|
|
|
|
| 30 |
pip install -U light-embed
|
| 31 |
```
|
| 32 |
|
| 33 |
+
Then you can use the model using the original model name like this:
|
| 34 |
|
| 35 |
```python
|
| 36 |
from light_embed import TextEmbedding
|
|
|
|
| 41 |
print(embeddings)
|
| 42 |
```
|
| 43 |
|
| 44 |
+
Then you can use the model using onnx model name like this:
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from light_embed import TextEmbedding
|
| 48 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 49 |
+
|
| 50 |
+
model = TextEmbedding('sbert-all-MiniLM-L6-v2-onnx')
|
| 51 |
+
embeddings = model.encode(sentences)
|
| 52 |
+
print(embeddings)
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
## Citing & Authors
|
| 56 |
|
| 57 |
Binh Nguyen / [email protected]
|