Towards-Errorless-Training-ImageNet-1k
/
Model_T_h1_m1
/Training_Evaluation
/Run_Training_Evaluation.m
% clear all | |
% | |
model='T_h1_m1'; | |
nmb_of_hidden_layers=1; | |
fun_training_evaulation(model,nmb_of_hidden_layers) | |
%% | |
load('T_h1_m1_1_performance.mat') | |
%% | |
rtmax=max(pstvrt_model,[],'all') | |
rtmin=min(pstvrt_model,[],'all') | |
rtmed=median(pstvrt_model(:),'all') | |
rtmean=mean(pstvrt_model(:),'all') | |
%% | |
aa=squeeze(pstvrt_model(1,:,1)); | |
bb=squeeze(pstvrt_model(1,:,2)); | |
cc=[aa,bb]; | |
idx=(cc==100); | |
nmb_of_100rt=sum(1*idx)-1 | |
rt100=(sum(idx*1)-1)/length(cc) | |
%% | |
[rtmin,rtmean,rtmean,rtmax,nmb_of_100rt] | |
%% | |
% channels_names={'R','G','B','RGg1','RBg1','GBg1','RGg2','RBg2','GBg2','RB','RG','GB','eRGB','BW','X','Y','Z'}; | |
% for module=1:nmb_of_modules | |
% for subset=1:nmb_of_module_subsets | |
% for color=1:nmb_of_colors | |
% reportname1 = sprintf('../Evaluation_Data/Model_Performance/Trained_Model_%s_patch_%d_module_%d_subset_%d_ch_%s.mat',... | |
% model,patch, module, subset, char(channels_names(color))); | |
% % training_performance=[true_label;predicted_label;predicted_distance]; | |
% save(reportname1, 'training_performance'); | |
% end | |
% end | |
% end | |