|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig |
|
|
|
|
|
|
|
|
|
import torch |
|
n_ahead_talk_global = 4 |
|
n_passes_global = 2 |
|
n_ahead_global = 8 |
|
n_examples = 0 |
|
|
|
def model_init(params): |
|
original = False |
|
if params is None: |
|
params = {} |
|
else: |
|
params = params.params |
|
|
|
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1) |
|
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1) |
|
n_passes = params.get("n_passes", n_passes_global if not original else 1) |
|
gumbel_temperature = params.get("gumbel_temperature", 1) |
|
use_start_thought_token = params.get("use_start_thought_token", True) |
|
use_end_thought_token = params.get("use_end_thought_token", True) |
|
include_policy_loss = params.get("include_policy_loss", True) |
|
gumbel_detach = params.get("gumbel_detach", True) |
|
merged_talk_heads = params.get("merged_talk_heads", True) |
|
residual_think_head = params.get("residual_think_head", False) |
|
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False) |
|
|
|
model_id = "LeroyDyer/_Spydaz_Web_AI_V2_Aligned" |
|
tokenizer_id = model_id |
|
print("Loading model") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, |
|
max_thoughts=n_ahead + n_ahead_talk + 1, |
|
merged_talk_heads=merged_talk_heads, |
|
merged_lm_and_talk_heads=False, |
|
merged_lm_and_think_heads=True, |
|
use_concat_talk_head=True, |
|
use_shallow_think=True, |
|
use_shallow_talk=False, |
|
use_complex_think_head=False, |
|
use_complex_talk_head=True, |
|
use_weighted_talk_head=True, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
print("Loaded model") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right") |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
special_tokens_to_add = [] |
|
if model.use_start_thought_token: |
|
special_tokens_to_add.append("<|startthought|>") |
|
if model.use_end_thought_token: |
|
special_tokens_to_add.append("<|endthought|>") |
|
if special_tokens_to_add: |
|
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add}) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
model.tokenizer = tokenizer |
|
for name, module in model.named_modules(): |
|
if "embed" in name: |
|
print(module, flush=True) |
|
|
|
model.gumbel_detach = gumbel_detach |
|
model.include_policy_loss = include_policy_loss |
|
model.use_end_thought_token = use_end_thought_token |
|
model.use_start_thought_token = use_start_thought_token |
|
model.n_ahead = n_ahead |
|
model.n_ahead_talk = n_ahead_talk |
|
model.n_passes = n_passes |
|
model.residual_think_head = residual_think_head |
|
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start |
|
model.gumbel_temperature = gumbel_temperature |
|
model.original_mode = original |
|
model.config_params = params |
|
model.run_start = int(time.time()) |
|
model.train() |
|
return model,tokenizer |
|
|
|
model,tokenizer = model_init(None) |
|
tokenizer.save_pretrained("IModel") |
|
model.save_pretrained("IModel") |
|
|
|
|
|
|
|
|
|
|
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
|
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
|
|
EOS_TOKEN = tokenizer.eos_token |
|
def formatting_prompts_func(examples): |
|
instructions = examples["instruction"] |
|
inputs = examples["input"] |
|
outputs = examples["output"] |
|
texts = [] |
|
for instruction, input, output in zip(instructions, inputs, outputs): |
|
|
|
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN |
|
texts.append(text) |
|
return { "text" : texts, } |
|
pass |
|
|
|
from datasets import load_dataset |
|
dataset = load_dataset("gate369/Alpaca-Star", split = "train[:2000]") |
|
dataset = dataset.shuffle(seed=3704) |
|
dataset = dataset.map(formatting_prompts_func, batched = True,) |
|
|