LenDigLearn commited on
Commit
4f2a810
·
verified ·
1 Parent(s): 60d14a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -51
README.md CHANGED
@@ -70,18 +70,9 @@ By Language:
70
  ## Usage example
71
 
72
  ```python
73
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
74
- import torch
75
 
76
- tokenizer = AutoTokenizer.from_pretrained("LenDigLearn/formality-classifier-mdeberta-v3-base")
77
- model = AutoModelForSequenceClassification.from_pretrained('LenDigLearn/formality-classifier-mdeberta-v3-base')
78
-
79
- def get_result(text):
80
- inputs = tokenizer(text, return_tensors="pt")
81
- with torch.no_grad():
82
- logits = model(**inputs).logits
83
- predicted_class_id = logits.argmax().item()
84
- return model.config.id2label[predicted_class_id]
85
 
86
 
87
  print("DE:")
@@ -91,7 +82,7 @@ texts_de = [
91
  "Man muss schon wissen, was dann passiert.", "Als nächstes kommen 4g Champignons und 500g Mehl dazu.", "Bananen sind krumm.", "Das ist eine Tatsache, die unumstößlich ist.", "Hilfestellungen sind unter \"Hilfe\" zu finden."
92
  ]
93
  for text in texts_de:
94
- print(get_result(text))
95
 
96
  print("-----------\nEN:")
97
  texts_en = [
@@ -100,43 +91,5 @@ texts_en = [
100
  "One would have to know what happens then.", "Then, we add 4g Mushrooms and 500g flour.", "Bananas are usually curved.", "That is an irrefutable fact.", "You can find helpful tutorials under \"help\"."
101
  ]
102
  for text in texts_en:
103
- print(get_result(text))
104
  ```
105
-
106
- **Outputs:**
107
-
108
- ```bash
109
- DE:
110
- informal
111
- informal
112
- informal
113
- informal
114
- informal
115
- formal
116
- formal
117
- formal
118
- formal
119
- formal
120
- neutral
121
- neutral
122
- neutral
123
- neutral
124
- neutral
125
- -----------
126
- EN:
127
- informal
128
- informal
129
- informal
130
- informal
131
- informal
132
- formal
133
- formal
134
- formal
135
- formal
136
- formal
137
- neutral
138
- neutral
139
- neutral
140
- neutral
141
- neutral
142
- ```
 
70
  ## Usage example
71
 
72
  ```python
73
+ from transformers import pipeline
 
74
 
75
+ pipe = pipeline("text-classification", model="LenDigLearn/formality-classifier-mdeberta-v3-base")
 
 
 
 
 
 
 
 
76
 
77
 
78
  print("DE:")
 
82
  "Man muss schon wissen, was dann passiert.", "Als nächstes kommen 4g Champignons und 500g Mehl dazu.", "Bananen sind krumm.", "Das ist eine Tatsache, die unumstößlich ist.", "Hilfestellungen sind unter \"Hilfe\" zu finden."
83
  ]
84
  for text in texts_de:
85
+ print(pipe(text))
86
 
87
  print("-----------\nEN:")
88
  texts_en = [
 
91
  "One would have to know what happens then.", "Then, we add 4g Mushrooms and 500g flour.", "Bananas are usually curved.", "That is an irrefutable fact.", "You can find helpful tutorials under \"help\"."
92
  ]
93
  for text in texts_en:
94
+ print(pipe(text))
95
  ```