Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π§± Dockerfile Quality Classifier β Multilabel Model
|
2 |
+
|
3 |
+
This model predicts **which rules are violated** in a given Dockerfile. It is a multilabel classifier trained to detect violations of the top 30 most frequent rules from Hadolint.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## π§ Model Overview
|
8 |
+
|
9 |
+
- **Architecture:** Fine-tuned `microsoft/codebert-base`
|
10 |
+
- **Task:** Multi-label classification (30 labels)
|
11 |
+
- **Input:** Full Dockerfile content as plain text
|
12 |
+
- **Output:** For each rule β probability of violation
|
13 |
+
- **Max input length:** 512 tokens
|
14 |
+
- **Threshold:** 0.5 (configurable)
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
## π Training Details
|
19 |
+
|
20 |
+
- **Total training files:** ~15,000 Dockerfiles with at least one rule violation
|
21 |
+
- **Per-rule cap:** Max 2,000 files per rule to avoid imbalance
|
22 |
+
- **Perfect (clean) files:** ~1,500 examples with no Hadolint violations
|
23 |
+
- **Label source:** Hadolint output (top 30 rules only)
|
24 |
+
- **One-hot labels:** `[1, 0, 0, 1, ...]` for 30 rules
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
## π§ͺ Evaluation Snapshot
|
29 |
+
|
30 |
+
Evaluation on 6,873 labeled examples:
|
31 |
+
|
32 |
+
| Metric | Value |
|
33 |
+
|----------------|--------|
|
34 |
+
| Micro avg F1 | 0.97 |
|
35 |
+
| Macro avg F1 | 0.95 |
|
36 |
+
| Weighted avg F1| 0.97 |
|
37 |
+
| Samples avg F1 | 0.97 |
|
38 |
+
|
39 |
+
More metrics available in `classification_report.csv`
|
40 |
+
|
41 |
+
---
|
42 |
+
|
43 |
+
## π Quick Start
|
44 |
+
|
45 |
+
### π§ͺ Step 1 β Create test script
|
46 |
+
|
47 |
+
Save as `test_multilabel_predict.py`:
|
48 |
+
|
49 |
+
```python
|
50 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
51 |
+
import torch
|
52 |
+
from pathlib import Path
|
53 |
+
import numpy as np
|
54 |
+
import json
|
55 |
+
import sys
|
56 |
+
|
57 |
+
MODEL_DIR = "LeeSek/multilabel-dockerfile-model"
|
58 |
+
TOP_RULES_PATH = "top_rules.json"
|
59 |
+
THRESHOLD = 0.5
|
60 |
+
|
61 |
+
def main():
|
62 |
+
if len(sys.argv) < 2:
|
63 |
+
print("Usage: python test_multilabel_predict.py Dockerfile [--debug]")
|
64 |
+
return
|
65 |
+
|
66 |
+
debug = "--debug" in sys.argv
|
67 |
+
file_path = Path(sys.argv[1])
|
68 |
+
if not file_path.exists():
|
69 |
+
print(f"File {file_path} not found.")
|
70 |
+
return
|
71 |
+
|
72 |
+
labels = json.load(open(TOP_RULES_PATH))
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
74 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR)
|
75 |
+
model.eval()
|
76 |
+
|
77 |
+
text = file_path.read_text(encoding="utf-8")
|
78 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
logits = model(**inputs).logits
|
82 |
+
probs = torch.sigmoid(logits).squeeze().cpu().numpy()
|
83 |
+
|
84 |
+
triggered = [(labels[i], probs[i]) for i in range(len(labels)) if probs[i] > THRESHOLD]
|
85 |
+
top5 = np.argsort(probs)[-5:][::-1]
|
86 |
+
|
87 |
+
print(f"\nπ§ͺ Prediction for file: {file_path.name}")
|
88 |
+
print(f"π Lines in file: {len(text.splitlines())}")
|
89 |
+
|
90 |
+
if triggered:
|
91 |
+
print(f"\nπ¨ Detected violations (p > {THRESHOLD}):")
|
92 |
+
for rule, p in triggered:
|
93 |
+
print(f" - {rule}: {p:.3f}")
|
94 |
+
else:
|
95 |
+
print("β
No violations detected.")
|
96 |
+
|
97 |
+
if debug:
|
98 |
+
print("\nπ DEBUG INFO:")
|
99 |
+
print(f"π Text snippet:\n{text[:300]}")
|
100 |
+
print(f"π’ Token count: {len(inputs['input_ids'][0])}")
|
101 |
+
print(f"π Logits: {logits.squeeze().tolist()}")
|
102 |
+
print("\nπ₯ Top 5 predictions:")
|
103 |
+
for idx in top5:
|
104 |
+
print(f" - {labels[idx]}: {probs[idx]:.3f}")
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
main()
|
108 |
+
```
|
109 |
+
|
110 |
+
Make sure `top_rules.json` is available next to the script.
|
111 |
+
|
112 |
+
---
|
113 |
+
|
114 |
+
### π§ͺ Step 2 β Create good and bad Dockerfile
|
115 |
+
|
116 |
+
Good:
|
117 |
+
|
118 |
+
```docker
|
119 |
+
FROM node:18
|
120 |
+
WORKDIR /app
|
121 |
+
COPY . .
|
122 |
+
RUN npm install
|
123 |
+
CMD ["node", "index.js"]
|
124 |
+
```
|
125 |
+
|
126 |
+
Bad:
|
127 |
+
|
128 |
+
```docker
|
129 |
+
FROM ubuntu:latest
|
130 |
+
RUN apt-get install python3
|
131 |
+
ADD . /app
|
132 |
+
WORKDIR /app
|
133 |
+
RUN pip install flask
|
134 |
+
CMD python3 app.py
|
135 |
+
```
|
136 |
+
|
137 |
+
### βΆοΈ Step 3 β Run the script
|
138 |
+
|
139 |
+
```bash
|
140 |
+
python test_multilabel_predict.py Dockerfile --debug
|
141 |
+
```
|
142 |
+
|
143 |
+
---
|
144 |
+
|
145 |
+
## π Extras
|
146 |
+
|
147 |
+
The full training and evaluation pipeline β including data preparation, training, validation, prediction, and threshold calibration β is available in the **`scripts/`** folder.
|
148 |
+
|
149 |
+
> π¬ **Note:** Scripts are written with **Polish comments and variable names** for clarity during local development. Logic is fully portable.
|
150 |
+
|
151 |
+
---
|
152 |
+
|
153 |
+
## π License
|
154 |
+
|
155 |
+
MIT
|
156 |
+
|
157 |
+
---
|
158 |
+
|
159 |
+
## π Credits
|
160 |
+
|
161 |
+
- Based on [Hadolint](https://github.com/hadolint/hadolint)
|
162 |
+
- Powered by [Hugging Face Transformers](https://huggingface.co)
|