Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π§± Dockerfile Quality Classifier β Binary Model
|
2 |
+
|
3 |
+
This model predicts whether a given Dockerfile is:
|
4 |
+
|
5 |
+
- β
**GOOD** β clean and adheres to best practices (no top rule violations)
|
6 |
+
- β **BAD** β violates at least one important rule (from Hadolint)
|
7 |
+
|
8 |
+
It is the first step in a full ML-based Dockerfile linter.
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
## π§ Model Overview
|
13 |
+
|
14 |
+
- **Architecture:** Fine-tuned `microsoft/codebert-base`
|
15 |
+
- **Task:** Binary classification (`good` vs `bad`)
|
16 |
+
- **Input:** Full Dockerfile content as plain text
|
17 |
+
- **Output:** `[prob_good, prob_bad]` β softmax scores
|
18 |
+
- **Max input length:** 512 tokens
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
## π Training Details
|
23 |
+
|
24 |
+
- **Data source:** Real-world and synthetic Dockerfiles
|
25 |
+
- **Labels:** Based on [Hadolint](https://github.com/hadolint/hadolint) top 30 rules
|
26 |
+
- **Bad examples:** At least one rule violated
|
27 |
+
- **Good examples:** Fully clean files
|
28 |
+
- **Dataset balance:** 50/50
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
## π§ͺ Evaluation Results
|
33 |
+
|
34 |
+
Evaluation on a held-out test set of 1,650 Dockerfiles:
|
35 |
+
|
36 |
+
| Class | Precision | Recall | F1-score | Support |
|
37 |
+
|-------|-----------|--------|----------|---------|
|
38 |
+
| good | 0.96 | 0.91 | 0.93 | 150 |
|
39 |
+
| bad | 0.99 | 1.00 | 0.99 | 1500 |
|
40 |
+
| **Accuracy** | | | **0.99** | 1650 |
|
41 |
+
|
42 |
+
---
|
43 |
+
|
44 |
+
## π Quick Start
|
45 |
+
|
46 |
+
### π§ͺ Step 1 β Create test script
|
47 |
+
|
48 |
+
Save this as `test_binary_predict.py`:
|
49 |
+
|
50 |
+
```python
|
51 |
+
import sys
|
52 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
53 |
+
import torch
|
54 |
+
from pathlib import Path
|
55 |
+
|
56 |
+
path = Path(sys.argv[1])
|
57 |
+
text = path.read_text(encoding="utf-8")
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("LeeSek/binary-dockerfile-model")
|
60 |
+
model = AutoModelForSequenceClassification.from_pretrained("LeeSek/binary-dockerfile-model")
|
61 |
+
model.eval()
|
62 |
+
|
63 |
+
inputs = tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=512)
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
logits = model(**inputs).logits
|
67 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze()
|
68 |
+
|
69 |
+
label = "GOOD" if torch.argmax(probs).item() == 0 else "BAD"
|
70 |
+
print(f"Prediction: {label} β Probabilities: good={probs[0]:.3f}, bad={probs[1]:.3f}")
|
71 |
+
```
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
### π Step 2 β Create a test Dockerfile
|
76 |
+
|
77 |
+
Save the following as `Dockerfile`:
|
78 |
+
|
79 |
+
```dockerfile
|
80 |
+
FROM node:18
|
81 |
+
WORKDIR /app
|
82 |
+
COPY . .
|
83 |
+
RUN npm install
|
84 |
+
CMD ["node", "index.js"]
|
85 |
+
```
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
### βΆοΈ Step 3 β Run the prediction
|
90 |
+
|
91 |
+
```bash
|
92 |
+
python test_binary_predict.py Dockerfile
|
93 |
+
```
|
94 |
+
|
95 |
+
Expected output:
|
96 |
+
|
97 |
+
```
|
98 |
+
Prediction: GOOD β Probabilities: good=0.998, bad=0.002
|
99 |
+
```
|
100 |
+
|
101 |
+
---
|
102 |
+
|
103 |
+
## π License
|
104 |
+
|
105 |
+
MIT
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
## π Credits
|
110 |
+
|
111 |
+
- Model powered by [Hugging Face Transformers](https://huggingface.co/transformers)
|
112 |
+
- Tokenizer: CodeBERT
|
113 |
+
- Rule definitions: [Hadolint](https://github.com/hadolint/hadolint)
|