--- library_name: transformers license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Bio_ClinicalBERT-finetuned-ner results: [] --- # Bio_ClinicalBERT-finetuned-ner This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1920 - Precision: 0.7879 - Recall: 0.8752 - F1: 0.8292 - Accuracy: 0.9456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1019 | 1.0 | 201 | 0.2103 | 0.7146 | 0.8483 | 0.7758 | 0.9310 | | 0.0457 | 2.0 | 402 | 0.1856 | 0.7642 | 0.8627 | 0.8104 | 0.9405 | | 0.0189 | 3.0 | 603 | 0.1830 | 0.7769 | 0.8708 | 0.8212 | 0.9431 | | 0.0237 | 4.0 | 804 | 0.1893 | 0.7739 | 0.8722 | 0.8201 | 0.9449 | | 0.0703 | 5.0 | 1005 | 0.1920 | 0.7879 | 0.8752 | 0.8292 | 0.9456 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Tokenizers 0.20.3