Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.05 +/- 134.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19a9386af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19a9386b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19a9386c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19a9386ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f19a9386d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f19a9386dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f19a9386e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19a9386ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19a9386f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19a938a040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19a938a0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19a938a160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f19a9387c00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679402787995338912, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoZNT7SYbU/jKoaP2fJXr5Mu7K9ct7BvQAAAAAAAAAAuiw1PoK/gD9qaps+Gxkxv6f6C7yyUPY9AAAAAAAAAABawE2+KvC5P2ujjL7PTqS+qivyvrod274AAAAAAAAAAICfuL0F8Ug/QM+NvncxTb+9UGo+c3JwPAAAAAAAAAAAzYzZuUVhrD91Sam5pW3NviNoE72bWRG+AAAAAAAAAABmN9g8QCO0PwpYoT61R629h0nTvAIC5rwAAAAAAAAAAHOTmz1jhaM/hz2LPnUUvL6zX3u9b36NPAAAAAAAAAAAZrZWuyOluj9Ow4g8mnMrvud3NT1kK4Q8AAAAAAAAAABma6A8joK3P72sIj4CmYm9ztlZvapxp70AAAAAAAAAAM303DvUlqQ/s9mVPaFExr4iKCe+JKcnvgAAAAAAAAAArWm4vgReID/zDwa/+kKCvxAwUr7b3H69AAAAAAAAAACgshe+CcgTPwozW75V74e/Z4JxPDGkhT4AAAAAAAAAALYYFr+hpNY+E98JvwwWZL9jlrO9c0FyvgAAAAAAAAAAgCgLvtR7hz3u03q9y4aqvyY2nj2ylGc+AAAAAAAAAACTsPU+W1N0P5D+FD8bUGO/gD1CPoZUjD4AAAAAAAAAAP1ClL5MDVg+24OgvjdwY78JnqO8pTHOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7N/1mbNiQsCUhpRSlIwBbJRLTIwBdJRHQHzF5dv863l1fZQoaAZoCWgPQwhv2LYos8RgwJSGlFKUaBVLWWgWR0B8xkXyiEg4dX2UKGgGaAloD0MI/1w0ZDycVMCUhpRSlGgVS25oFkdAfMcFJxvNvHV9lChoBmgJaA9DCDRnfcoxx17AlIaUUpRoFUtiaBZHQHzHTmfXf651fZQoaAZoCWgPQwhTIR6Jl+RpwJSGlFKUaBVLfmgWR0B8x0byYoiLdX2UKGgGaAloD0MITRB1H4AYV8CUhpRSlGgVS1NoFkdAfMfFKkEcKnV9lChoBmgJaA9DCApoImx4Ov2/lIaUUpRoFUt2aBZHQHzIcWGh24d1fZQoaAZoCWgPQwgS2JyDZzpHwJSGlFKUaBVLQmgWR0B8yGvgWJrMdX2UKGgGaAloD0MIccYwJ2ibVcCUhpRSlGgVS0ZoFkdAfMi5GBnSOXV9lChoBmgJaA9DCDS5GAPr1E7AlIaUUpRoFUtxaBZHQHzI6t9x6v91fZQoaAZoCWgPQwioGyjwThBSwJSGlFKUaBVLTGgWR0B8yQMz/IbPdX2UKGgGaAloD0MIRidLrfdVVcCUhpRSlGgVS3NoFkdAfMmAAAAAAHV9lChoBmgJaA9DCHAIVWr2d2LAlIaUUpRoFUtuaBZHQHzJqHGjsUt1fZQoaAZoCWgPQwglXMgjuFtcwJSGlFKUaBVLbmgWR0B8y0MXrMTwdX2UKGgGaAloD0MI4q/JGvVASMCUhpRSlGgVS0BoFkdAfMs4YJmdy3V9lChoBmgJaA9DCI+qJoi6LVXAlIaUUpRoFUtQaBZHQHzLQdKdxyZ1fZQoaAZoCWgPQwjE7juGx+xBwJSGlFKUaBVLTmgWR0B8y9Kg7HQydX2UKGgGaAloD0MIeCgK9In+XcCUhpRSlGgVS2RoFkdAfMvImgJ1JXV9lChoBmgJaA9DCAGFevoIFCfAlIaUUpRoFUuJaBZHQHzL+J1q33J1fZQoaAZoCWgPQwgCYhIu5MBZwJSGlFKUaBVLTWgWR0B8zGQzUI9ldX2UKGgGaAloD0MIFytqMA3dSsCUhpRSlGgVS0RoFkdAfMyKkl/pdXV9lChoBmgJaA9DCNtMhXgku1vAlIaUUpRoFUtjaBZHQHzNXRTjvNN1fZQoaAZoCWgPQwjizK/mAJVLwJSGlFKUaBVLTGgWR0B8zaK1og3cdX2UKGgGaAloD0MIduEH51M7U8CUhpRSlGgVS1FoFkdAfM3d5IH1OHV9lChoBmgJaA9DCMyyJ4HNHlrAlIaUUpRoFUuPaBZHQHzOqVhTfix1fZQoaAZoCWgPQwjFqkGY26xZwJSGlFKUaBVLamgWR0B8ztyksSTRdX2UKGgGaAloD0MIAMYzaOgnWcCUhpRSlGgVS2doFkdAfM7/RE4NqnV9lChoBmgJaA9DCKezk8FR+1vAlIaUUpRoFUtsaBZHQHzQDEaVD8d1fZQoaAZoCWgPQwg/rDdqhdlGwJSGlFKUaBVLQ2gWR0B80AaZQYUGdX2UKGgGaAloD0MIa+9TVegQY8CUhpRSlGgVS2poFkdAfNAYZEUj9nV9lChoBmgJaA9DCIup9BNOkWDAlIaUUpRoFUtiaBZHQHzRJh8Yyft1fZQoaAZoCWgPQwgc7iO3JoVOwJSGlFKUaBVLYGgWR0B80aVv/BFedX2UKGgGaAloD0MICeBm8WIcXMCUhpRSlGgVS2hoFkdAfNIzlLeyiXV9lChoBmgJaA9DCAjpKXKIbFPAlIaUUpRoFUtcaBZHQHzSRaC+UQl1fZQoaAZoCWgPQwgHCVG+oMlTwJSGlFKUaBVLdGgWR0B80l/Aj6eodX2UKGgGaAloD0MI9yFvufrdTcCUhpRSlGgVS1JoFkdAfNLgDA8B/HV9lChoBmgJaA9DCMyyJ4HNNVrAlIaUUpRoFUtpaBZHQHzTFhXr+o91fZQoaAZoCWgPQwh9Bz9xAD1OwJSGlFKUaBVLSmgWR0B802nKnvUjdX2UKGgGaAloD0MIy0v+J39MUcCUhpRSlGgVS5FoFkdAfNQ2b5M10nV9lChoBmgJaA9DCIyDS8ecXF3AlIaUUpRoFUtxaBZHQHzUZ9NN8E51fZQoaAZoCWgPQwgDIy9rYjZTwJSGlFKUaBVLSWgWR0B81K2/i5uqdX2UKGgGaAloD0MIq8yU1t/gTcCUhpRSlGgVS21oFkdAfNSoA4n4PHV9lChoBmgJaA9DCIyBdRw/o1bAlIaUUpRoFUtwaBZHQHzVt9tuUEB1fZQoaAZoCWgPQwgSEmkbf9RWwJSGlFKUaBVLYGgWR0B81gDcM3IddX2UKGgGaAloD0MI6Sec3Vo6XsCUhpRSlGgVS2NoFkdAfNYeFtbcGnV9lChoBmgJaA9DCGL1RxgGqljAlIaUUpRoFUteaBZHQHzW2yon8bd1fZQoaAZoCWgPQwiUMT7MXhhawJSGlFKUaBVLUGgWR0B81xA5aNdadX2UKGgGaAloD0MIY2TJHMtgXcCUhpRSlGgVS5FoFkdAfNfN/OMVDnV9lChoBmgJaA9DCAaeew+XVFbAlIaUUpRoFUtTaBZHQHzX38jzI3l1fZQoaAZoCWgPQwgiMxe4PMRDwJSGlFKUaBVLYWgWR0B82Cpn6EamdX2UKGgGaAloD0MI6nk3FhS2WcCUhpRSlGgVS2loFkdAfNh6zE74jHV9lChoBmgJaA9DCNCYSdQLW1jAlIaUUpRoFUtfaBZHQHzY57w8W9F1fZQoaAZoCWgPQwiLU62FWQxbwJSGlFKUaBVLUGgWR0B82QpNKyv+dX2UKGgGaAloD0MIAwr19BHGVsCUhpRSlGgVS2toFkdAfNkVYp2ECnV9lChoBmgJaA9DCP1oOGVuIE/AlIaUUpRoFUuIaBZHQHzZxcE/0NB1fZQoaAZoCWgPQwhCe/Xx0AtUwJSGlFKUaBVLXGgWR0B82fibUgB+dX2UKGgGaAloD0MI2BAcl3H2V8CUhpRSlGgVS09oFkdAfNpY+Sr5qXV9lChoBmgJaA9DCD6T/fM0ukLAlIaUUpRoFUtxaBZHQHzawtJ4B3l1fZQoaAZoCWgPQwhioGtfQItAwJSGlFKUaBVLRWgWR0B82unZTQ3QdX2UKGgGaAloD0MIx0eLM4bZU8CUhpRSlGgVS3BoFkdAfNsrrPdEcHV9lChoBmgJaA9DCH8w8Nx7lDbAlIaUUpRoFUtHaBZHQHzcOjua4MF1fZQoaAZoCWgPQwjqswOuKwBRwJSGlFKUaBVLc2gWR0B83NNIsiB5dX2UKGgGaAloD0MIeqUsQxx3WcCUhpRSlGgVS1hoFkdAfNztXxOLznV9lChoBmgJaA9DCDkn9tA+oFjAlIaUUpRoFUt4aBZHQHzdG0eEIxB1fZQoaAZoCWgPQwjgY7DiVEZVwJSGlFKUaBVLV2gWR0B83a6XjU/fdX2UKGgGaAloD0MIsffii/baQ8CUhpRSlGgVS1ZoFkdAfN43CsOoYXV9lChoBmgJaA9DCE1KQbeX9FfAlIaUUpRoFUtwaBZHQHzeikj5bhZ1fZQoaAZoCWgPQwg/qfbpeBFVwJSGlFKUaBVLPWgWR0B83t8YyfthdX2UKGgGaAloD0MIeSRens4HQsCUhpRSlGgVS01oFkdAfN8Ey+HrQnV9lChoBmgJaA9DCBDn4QSmf03AlIaUUpRoFUtGaBZHQHzfCuuA7Pp1fZQoaAZoCWgPQwgpP6n26T5VwJSGlFKUaBVLVmgWR0B83zLNfPX1dX2UKGgGaAloD0MIwJfCg2YrT8CUhpRSlGgVS41oFkdAfN9+PzWf9XV9lChoBmgJaA9DCMZtNIC3GVDAlIaUUpRoFUtyaBZHQHzfxD9fkWB1fZQoaAZoCWgPQwiop4/AH7NWwJSGlFKUaBVLUmgWR0B83+XQdCE6dX2UKGgGaAloD0MIgez17o8bPcCUhpRSlGgVS3loFkdAfOA/A0sOG3V9lChoBmgJaA9DCEmAmlq21VDAlIaUUpRoFUs+aBZHQHzgw22oegd1fZQoaAZoCWgPQwh4CrlSz3NXwJSGlFKUaBVLP2gWR0B84VkXk5p8dX2UKGgGaAloD0MItrkxPWHdV8CUhpRSlGgVS0xoFkdAfOF8TzundnV9lChoBmgJaA9DCJENpItNG0fAlIaUUpRoFUuDaBZHQHzhjAi3XqZ1fZQoaAZoCWgPQwj28GWiCGpZwJSGlFKUaBVLYGgWR0B84gJBw++udX2UKGgGaAloD0MIOEw0SMHXT8CUhpRSlGgVSz5oFkdAfOKTF2mpEXV9lChoBmgJaA9DCDSCjevff1vAlIaUUpRoFUtJaBZHQHzjHC9AX2x1fZQoaAZoCWgPQwiWzodnCSFUwJSGlFKUaBVLOmgWR0B84zXFtKqXdX2UKGgGaAloD0MIeJYgI6AoYcCUhpRSlGgVS2toFkdAfOM7PIGQjnV9lChoBmgJaA9DCD6Skh6GKl7AlIaUUpRoFUtSaBZHQHzjyEYfnwJ1fZQoaAZoCWgPQwjeH+9VKzJawJSGlFKUaBVLSmgWR0B85As189fUdX2UKGgGaAloD0MIrAMg7urNUMCUhpRSlGgVS2poFkdAfOR0Qsf7rXV9lChoBmgJaA9DCKGgFK3ccFDAlIaUUpRoFUtGaBZHQHzk5DE3sHB1fZQoaAZoCWgPQwjZQ/tYwUVXwJSGlFKUaBVLbmgWR0B85P1OCXhPdX2UKGgGaAloD0MIdGGkF7UDT8CUhpRSlGgVS09oFkdAfOYEVnEl3XV9lChoBmgJaA9DCN2XM9sVQVTAlIaUUpRoFUtPaBZHQHzmOGXXyy51fZQoaAZoCWgPQwi3eeOkMI1RwJSGlFKUaBVLfmgWR0B85tvXK8tgdX2UKGgGaAloD0MIcegtHt5XScCUhpRSlGgVS4RoFkdAfObo2XLNfXV9lChoBmgJaA9DCBVxOslWF13AlIaUUpRoFUtUaBZHQHzoI8EFGG51fZQoaAZoCWgPQwjOcW4T7hRZwJSGlFKUaBVLU2gWR0B86C4smOU/dX2UKGgGaAloD0MIuTXptkQsTsCUhpRSlGgVS3NoFkdAfOha/RE4N3V9lChoBmgJaA9DCJNy9zk+KhzAlIaUUpRoFUuMaBZHQHzoiDh99c91fZQoaAZoCWgPQwgeUgyQaHdTwJSGlFKUaBVLRGgWR0B86RY5ksjFdX2UKGgGaAloD0MILuI7Meu+WsCUhpRSlGgVS31oFkdAfOmBNVR1o3V9lChoBmgJaA9DCAmp29lXuFzAlIaUUpRoFUtzaBZHQHzpgn6VMVV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c9cf3c8f6e0860b27662b40670bdee27c2bc6eaec1ff41176d8b0e5fb84642c
|
3 |
+
size 147292
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f19a9386af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19a9386b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19a9386c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19a9386ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f19a9386d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f19a9386dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f19a9386e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19a9386ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f19a9386f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19a938a040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19a938a0d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19a938a160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f19a9387c00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 114688,
|
47 |
+
"_total_timesteps": 100000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679402787995338912,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoZNT7SYbU/jKoaP2fJXr5Mu7K9ct7BvQAAAAAAAAAAuiw1PoK/gD9qaps+Gxkxv6f6C7yyUPY9AAAAAAAAAABawE2+KvC5P2ujjL7PTqS+qivyvrod274AAAAAAAAAAICfuL0F8Ug/QM+NvncxTb+9UGo+c3JwPAAAAAAAAAAAzYzZuUVhrD91Sam5pW3NviNoE72bWRG+AAAAAAAAAABmN9g8QCO0PwpYoT61R629h0nTvAIC5rwAAAAAAAAAAHOTmz1jhaM/hz2LPnUUvL6zX3u9b36NPAAAAAAAAAAAZrZWuyOluj9Ow4g8mnMrvud3NT1kK4Q8AAAAAAAAAABma6A8joK3P72sIj4CmYm9ztlZvapxp70AAAAAAAAAAM303DvUlqQ/s9mVPaFExr4iKCe+JKcnvgAAAAAAAAAArWm4vgReID/zDwa/+kKCvxAwUr7b3H69AAAAAAAAAACgshe+CcgTPwozW75V74e/Z4JxPDGkhT4AAAAAAAAAALYYFr+hpNY+E98JvwwWZL9jlrO9c0FyvgAAAAAAAAAAgCgLvtR7hz3u03q9y4aqvyY2nj2ylGc+AAAAAAAAAACTsPU+W1N0P5D+FD8bUGO/gD1CPoZUjD4AAAAAAAAAAP1ClL5MDVg+24OgvjdwY78JnqO8pTHOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.1468799999999999,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7N/1mbNiQsCUhpRSlIwBbJRLTIwBdJRHQHzF5dv863l1fZQoaAZoCWgPQwhv2LYos8RgwJSGlFKUaBVLWWgWR0B8xkXyiEg4dX2UKGgGaAloD0MI/1w0ZDycVMCUhpRSlGgVS25oFkdAfMcFJxvNvHV9lChoBmgJaA9DCDRnfcoxx17AlIaUUpRoFUtiaBZHQHzHTmfXf651fZQoaAZoCWgPQwhTIR6Jl+RpwJSGlFKUaBVLfmgWR0B8x0byYoiLdX2UKGgGaAloD0MITRB1H4AYV8CUhpRSlGgVS1NoFkdAfMfFKkEcKnV9lChoBmgJaA9DCApoImx4Ov2/lIaUUpRoFUt2aBZHQHzIcWGh24d1fZQoaAZoCWgPQwgS2JyDZzpHwJSGlFKUaBVLQmgWR0B8yGvgWJrMdX2UKGgGaAloD0MIccYwJ2ibVcCUhpRSlGgVS0ZoFkdAfMi5GBnSOXV9lChoBmgJaA9DCDS5GAPr1E7AlIaUUpRoFUtxaBZHQHzI6t9x6v91fZQoaAZoCWgPQwioGyjwThBSwJSGlFKUaBVLTGgWR0B8yQMz/IbPdX2UKGgGaAloD0MIRidLrfdVVcCUhpRSlGgVS3NoFkdAfMmAAAAAAHV9lChoBmgJaA9DCHAIVWr2d2LAlIaUUpRoFUtuaBZHQHzJqHGjsUt1fZQoaAZoCWgPQwglXMgjuFtcwJSGlFKUaBVLbmgWR0B8y0MXrMTwdX2UKGgGaAloD0MI4q/JGvVASMCUhpRSlGgVS0BoFkdAfMs4YJmdy3V9lChoBmgJaA9DCI+qJoi6LVXAlIaUUpRoFUtQaBZHQHzLQdKdxyZ1fZQoaAZoCWgPQwjE7juGx+xBwJSGlFKUaBVLTmgWR0B8y9Kg7HQydX2UKGgGaAloD0MIeCgK9In+XcCUhpRSlGgVS2RoFkdAfMvImgJ1JXV9lChoBmgJaA9DCAGFevoIFCfAlIaUUpRoFUuJaBZHQHzL+J1q33J1fZQoaAZoCWgPQwgCYhIu5MBZwJSGlFKUaBVLTWgWR0B8zGQzUI9ldX2UKGgGaAloD0MIFytqMA3dSsCUhpRSlGgVS0RoFkdAfMyKkl/pdXV9lChoBmgJaA9DCNtMhXgku1vAlIaUUpRoFUtjaBZHQHzNXRTjvNN1fZQoaAZoCWgPQwjizK/mAJVLwJSGlFKUaBVLTGgWR0B8zaK1og3cdX2UKGgGaAloD0MIduEH51M7U8CUhpRSlGgVS1FoFkdAfM3d5IH1OHV9lChoBmgJaA9DCMyyJ4HNHlrAlIaUUpRoFUuPaBZHQHzOqVhTfix1fZQoaAZoCWgPQwjFqkGY26xZwJSGlFKUaBVLamgWR0B8ztyksSTRdX2UKGgGaAloD0MIAMYzaOgnWcCUhpRSlGgVS2doFkdAfM7/RE4NqnV9lChoBmgJaA9DCKezk8FR+1vAlIaUUpRoFUtsaBZHQHzQDEaVD8d1fZQoaAZoCWgPQwg/rDdqhdlGwJSGlFKUaBVLQ2gWR0B80AaZQYUGdX2UKGgGaAloD0MIa+9TVegQY8CUhpRSlGgVS2poFkdAfNAYZEUj9nV9lChoBmgJaA9DCIup9BNOkWDAlIaUUpRoFUtiaBZHQHzRJh8Yyft1fZQoaAZoCWgPQwgc7iO3JoVOwJSGlFKUaBVLYGgWR0B80aVv/BFedX2UKGgGaAloD0MICeBm8WIcXMCUhpRSlGgVS2hoFkdAfNIzlLeyiXV9lChoBmgJaA9DCAjpKXKIbFPAlIaUUpRoFUtcaBZHQHzSRaC+UQl1fZQoaAZoCWgPQwgHCVG+oMlTwJSGlFKUaBVLdGgWR0B80l/Aj6eodX2UKGgGaAloD0MI9yFvufrdTcCUhpRSlGgVS1JoFkdAfNLgDA8B/HV9lChoBmgJaA9DCMyyJ4HNNVrAlIaUUpRoFUtpaBZHQHzTFhXr+o91fZQoaAZoCWgPQwh9Bz9xAD1OwJSGlFKUaBVLSmgWR0B802nKnvUjdX2UKGgGaAloD0MIy0v+J39MUcCUhpRSlGgVS5FoFkdAfNQ2b5M10nV9lChoBmgJaA9DCIyDS8ecXF3AlIaUUpRoFUtxaBZHQHzUZ9NN8E51fZQoaAZoCWgPQwgDIy9rYjZTwJSGlFKUaBVLSWgWR0B81K2/i5uqdX2UKGgGaAloD0MIq8yU1t/gTcCUhpRSlGgVS21oFkdAfNSoA4n4PHV9lChoBmgJaA9DCIyBdRw/o1bAlIaUUpRoFUtwaBZHQHzVt9tuUEB1fZQoaAZoCWgPQwgSEmkbf9RWwJSGlFKUaBVLYGgWR0B81gDcM3IddX2UKGgGaAloD0MI6Sec3Vo6XsCUhpRSlGgVS2NoFkdAfNYeFtbcGnV9lChoBmgJaA9DCGL1RxgGqljAlIaUUpRoFUteaBZHQHzW2yon8bd1fZQoaAZoCWgPQwiUMT7MXhhawJSGlFKUaBVLUGgWR0B81xA5aNdadX2UKGgGaAloD0MIY2TJHMtgXcCUhpRSlGgVS5FoFkdAfNfN/OMVDnV9lChoBmgJaA9DCAaeew+XVFbAlIaUUpRoFUtTaBZHQHzX38jzI3l1fZQoaAZoCWgPQwgiMxe4PMRDwJSGlFKUaBVLYWgWR0B82Cpn6EamdX2UKGgGaAloD0MI6nk3FhS2WcCUhpRSlGgVS2loFkdAfNh6zE74jHV9lChoBmgJaA9DCNCYSdQLW1jAlIaUUpRoFUtfaBZHQHzY57w8W9F1fZQoaAZoCWgPQwiLU62FWQxbwJSGlFKUaBVLUGgWR0B82QpNKyv+dX2UKGgGaAloD0MIAwr19BHGVsCUhpRSlGgVS2toFkdAfNkVYp2ECnV9lChoBmgJaA9DCP1oOGVuIE/AlIaUUpRoFUuIaBZHQHzZxcE/0NB1fZQoaAZoCWgPQwhCe/Xx0AtUwJSGlFKUaBVLXGgWR0B82fibUgB+dX2UKGgGaAloD0MI2BAcl3H2V8CUhpRSlGgVS09oFkdAfNpY+Sr5qXV9lChoBmgJaA9DCD6T/fM0ukLAlIaUUpRoFUtxaBZHQHzawtJ4B3l1fZQoaAZoCWgPQwhioGtfQItAwJSGlFKUaBVLRWgWR0B82unZTQ3QdX2UKGgGaAloD0MIx0eLM4bZU8CUhpRSlGgVS3BoFkdAfNsrrPdEcHV9lChoBmgJaA9DCH8w8Nx7lDbAlIaUUpRoFUtHaBZHQHzcOjua4MF1fZQoaAZoCWgPQwjqswOuKwBRwJSGlFKUaBVLc2gWR0B83NNIsiB5dX2UKGgGaAloD0MIeqUsQxx3WcCUhpRSlGgVS1hoFkdAfNztXxOLznV9lChoBmgJaA9DCDkn9tA+oFjAlIaUUpRoFUt4aBZHQHzdG0eEIxB1fZQoaAZoCWgPQwjgY7DiVEZVwJSGlFKUaBVLV2gWR0B83a6XjU/fdX2UKGgGaAloD0MIsffii/baQ8CUhpRSlGgVS1ZoFkdAfN43CsOoYXV9lChoBmgJaA9DCE1KQbeX9FfAlIaUUpRoFUtwaBZHQHzeikj5bhZ1fZQoaAZoCWgPQwg/qfbpeBFVwJSGlFKUaBVLPWgWR0B83t8YyfthdX2UKGgGaAloD0MIeSRens4HQsCUhpRSlGgVS01oFkdAfN8Ey+HrQnV9lChoBmgJaA9DCBDn4QSmf03AlIaUUpRoFUtGaBZHQHzfCuuA7Pp1fZQoaAZoCWgPQwgpP6n26T5VwJSGlFKUaBVLVmgWR0B83zLNfPX1dX2UKGgGaAloD0MIwJfCg2YrT8CUhpRSlGgVS41oFkdAfN9+PzWf9XV9lChoBmgJaA9DCMZtNIC3GVDAlIaUUpRoFUtyaBZHQHzfxD9fkWB1fZQoaAZoCWgPQwiop4/AH7NWwJSGlFKUaBVLUmgWR0B83+XQdCE6dX2UKGgGaAloD0MIgez17o8bPcCUhpRSlGgVS3loFkdAfOA/A0sOG3V9lChoBmgJaA9DCEmAmlq21VDAlIaUUpRoFUs+aBZHQHzgw22oegd1fZQoaAZoCWgPQwh4CrlSz3NXwJSGlFKUaBVLP2gWR0B84VkXk5p8dX2UKGgGaAloD0MItrkxPWHdV8CUhpRSlGgVS0xoFkdAfOF8TzundnV9lChoBmgJaA9DCJENpItNG0fAlIaUUpRoFUuDaBZHQHzhjAi3XqZ1fZQoaAZoCWgPQwj28GWiCGpZwJSGlFKUaBVLYGgWR0B84gJBw++udX2UKGgGaAloD0MIOEw0SMHXT8CUhpRSlGgVSz5oFkdAfOKTF2mpEXV9lChoBmgJaA9DCDSCjevff1vAlIaUUpRoFUtJaBZHQHzjHC9AX2x1fZQoaAZoCWgPQwiWzodnCSFUwJSGlFKUaBVLOmgWR0B84zXFtKqXdX2UKGgGaAloD0MIeJYgI6AoYcCUhpRSlGgVS2toFkdAfOM7PIGQjnV9lChoBmgJaA9DCD6Skh6GKl7AlIaUUpRoFUtSaBZHQHzjyEYfnwJ1fZQoaAZoCWgPQwjeH+9VKzJawJSGlFKUaBVLSmgWR0B85As189fUdX2UKGgGaAloD0MIrAMg7urNUMCUhpRSlGgVS2poFkdAfOR0Qsf7rXV9lChoBmgJaA9DCKGgFK3ccFDAlIaUUpRoFUtGaBZHQHzk5DE3sHB1fZQoaAZoCWgPQwjZQ/tYwUVXwJSGlFKUaBVLbmgWR0B85P1OCXhPdX2UKGgGaAloD0MIdGGkF7UDT8CUhpRSlGgVS09oFkdAfOYEVnEl3XV9lChoBmgJaA9DCN2XM9sVQVTAlIaUUpRoFUtPaBZHQHzmOGXXyy51fZQoaAZoCWgPQwi3eeOkMI1RwJSGlFKUaBVLfmgWR0B85tvXK8tgdX2UKGgGaAloD0MIcegtHt5XScCUhpRSlGgVS4RoFkdAfObo2XLNfXV9lChoBmgJaA9DCBVxOslWF13AlIaUUpRoFUtUaBZHQHzoI8EFGG51fZQoaAZoCWgPQwjOcW4T7hRZwJSGlFKUaBVLU2gWR0B86C4smOU/dX2UKGgGaAloD0MIuTXptkQsTsCUhpRSlGgVS3NoFkdAfOha/RE4N3V9lChoBmgJaA9DCJNy9zk+KhzAlIaUUpRoFUuMaBZHQHzoiDh99c91fZQoaAZoCWgPQwgeUgyQaHdTwJSGlFKUaBVLRGgWR0B86RY5ksjFdX2UKGgGaAloD0MILuI7Meu+WsCUhpRSlGgVS31oFkdAfOmBNVR1o3V9lChoBmgJaA9DCAmp29lXuFzAlIaUUpRoFUtzaBZHQHzpgn6VMVV1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 28,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e58f9dd61863a91fcf65215492015461ae6bf1d761d1ef5bac5d73f1b08a95e6
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:485eeedafae4923e4c4e1c958a64d795b7909f4d44468a48bd712c3ee11f67c6
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (240 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.04798621088848, "std_reward": 134.61965948914886, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T13:02:04.103426"}
|