Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1095 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +56 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1095 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:7552
|
8 |
+
- loss:CoSENTLoss
|
9 |
+
base_model: intfloat/multilingual-e5-large-instruct
|
10 |
+
widget:
|
11 |
+
- source_sentence: How are calibration points linked to equipment?
|
12 |
+
sentences:
|
13 |
+
- 'How are flow computers and measurement systems related?
|
14 |
+
|
15 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
16 |
+
system can only be assigned to one flow computer.
|
17 |
+
|
18 |
+
|
19 |
+
Database terminology:
|
20 |
+
|
21 |
+
In the database, this relationship is referred to as:
|
22 |
+
|
23 |
+
- Meter streams
|
24 |
+
|
25 |
+
- Meter runs
|
26 |
+
|
27 |
+
- Sections
|
28 |
+
|
29 |
+
|
30 |
+
Storage of the relationship:
|
31 |
+
|
32 |
+
The relationship between a flow computer and its assigned measurement system is
|
33 |
+
stored in a special table.
|
34 |
+
|
35 |
+
|
36 |
+
User context:
|
37 |
+
|
38 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
39 |
+
for a measurement system assigned to a specific flow computer.'
|
40 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
41 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
42 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
43 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
44 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
45 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
46 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
47 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
48 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
49 |
+
\ each value in the reports, making it easier to interpret the data."
|
50 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
51 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
52 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
53 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
54 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
55 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
56 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
57 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
58 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
59 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
60 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
61 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
62 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
63 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
64 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
65 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
66 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
67 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
68 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
69 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
70 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
71 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
72 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
73 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
74 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
75 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
76 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
77 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
78 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
79 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
80 |
+
\ systems table + uncertainty of magnitudes table)."
|
81 |
+
- source_sentence: What is the primary key of the flow computer table?
|
82 |
+
sentences:
|
83 |
+
- 'What is equipment calibration?
|
84 |
+
|
85 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
86 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
87 |
+
by the company or a regulatory body.
|
88 |
+
|
89 |
+
|
90 |
+
Purpose of calibration:
|
91 |
+
|
92 |
+
The calibration process corrects any deviations in how the equipment measures
|
93 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
94 |
+
and reliable data.
|
95 |
+
|
96 |
+
|
97 |
+
Calibration cycles:
|
98 |
+
|
99 |
+
There are two main calibration cycles:
|
100 |
+
|
101 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
102 |
+
are made. This cycle is almost always implemented.
|
103 |
+
|
104 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
105 |
+
are made. This cycle is used depending on regulatory requirements.
|
106 |
+
|
107 |
+
|
108 |
+
Calibration uncertainty:
|
109 |
+
|
110 |
+
- Uncertainty is included in the results of a calibration.
|
111 |
+
|
112 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
113 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
114 |
+
- 'What is equipment calibration?
|
115 |
+
|
116 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
117 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
118 |
+
by the company or a regulatory body.
|
119 |
+
|
120 |
+
|
121 |
+
Purpose of calibration:
|
122 |
+
|
123 |
+
The calibration process corrects any deviations in how the equipment measures
|
124 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
125 |
+
and reliable data.
|
126 |
+
|
127 |
+
|
128 |
+
Calibration cycles:
|
129 |
+
|
130 |
+
There are two main calibration cycles:
|
131 |
+
|
132 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
133 |
+
are made. This cycle is almost always implemented.
|
134 |
+
|
135 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
136 |
+
are made. This cycle is used depending on regulatory requirements.
|
137 |
+
|
138 |
+
|
139 |
+
Calibration uncertainty:
|
140 |
+
|
141 |
+
- Uncertainty is included in the results of a calibration.
|
142 |
+
|
143 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
144 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
145 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
146 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
147 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
148 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
149 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
150 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
151 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
152 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
153 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
154 |
+
\ each value in the reports, making it easier to interpret the data."
|
155 |
+
- source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
|
156 |
+
result for the specified tag and date?
|
157 |
+
sentences:
|
158 |
+
- 'What is equipment calibration?
|
159 |
+
|
160 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
161 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
162 |
+
by the company or a regulatory body.
|
163 |
+
|
164 |
+
|
165 |
+
Purpose of calibration:
|
166 |
+
|
167 |
+
The calibration process corrects any deviations in how the equipment measures
|
168 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
169 |
+
and reliable data.
|
170 |
+
|
171 |
+
|
172 |
+
Calibration cycles:
|
173 |
+
|
174 |
+
There are two main calibration cycles:
|
175 |
+
|
176 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
177 |
+
are made. This cycle is almost always implemented.
|
178 |
+
|
179 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
180 |
+
are made. This cycle is used depending on regulatory requirements.
|
181 |
+
|
182 |
+
|
183 |
+
Calibration uncertainty:
|
184 |
+
|
185 |
+
- Uncertainty is included in the results of a calibration.
|
186 |
+
|
187 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
188 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
189 |
+
- 'What kind of data store an equipment?
|
190 |
+
|
191 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
192 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
193 |
+
|
194 |
+
|
195 |
+
Data storage:
|
196 |
+
|
197 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
198 |
+
This table contains the values of the variables captured by the equipments.
|
199 |
+
|
200 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
201 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
202 |
+
uncertainty.
|
203 |
+
|
204 |
+
- The values stored in the variable values table are **different** from variable
|
205 |
+
uncertainty values, which are calculated separately and represent the margin of
|
206 |
+
error.
|
207 |
+
|
208 |
+
|
209 |
+
Accessing the data:
|
210 |
+
|
211 |
+
- Users typically access the data by referring to the readings from the measurement
|
212 |
+
system, not directly from the individual equipments.
|
213 |
+
|
214 |
+
- The readings are stored in a "variable values" table within the database.
|
215 |
+
|
216 |
+
|
217 |
+
Linking variable names:
|
218 |
+
|
219 |
+
If the user needs to know the name of a variable, they must link the data to another
|
220 |
+
table that stores information about the types of variables.'
|
221 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
222 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
223 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
224 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
225 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
226 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
227 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
228 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
229 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
230 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
231 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
232 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
233 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
234 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
235 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
236 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
237 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
238 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
239 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
240 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
241 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
242 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
243 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
244 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
245 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
246 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
247 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
248 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
249 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
250 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
251 |
+
\ systems table + uncertainty of magnitudes table)."
|
252 |
+
- source_sentence: How are the secondary equipment and measurement system related?
|
253 |
+
sentences:
|
254 |
+
- 'What kind of data store an equipment?
|
255 |
+
|
256 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
257 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
258 |
+
|
259 |
+
|
260 |
+
Data storage:
|
261 |
+
|
262 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
263 |
+
This table contains the values of the variables captured by the equipments.
|
264 |
+
|
265 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
266 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
267 |
+
uncertainty.
|
268 |
+
|
269 |
+
- The values stored in the variable values table are **different** from variable
|
270 |
+
uncertainty values, which are calculated separately and represent the margin of
|
271 |
+
error.
|
272 |
+
|
273 |
+
|
274 |
+
Accessing the data:
|
275 |
+
|
276 |
+
- Users typically access the data by referring to the readings from the measurement
|
277 |
+
system, not directly from the individual equipments.
|
278 |
+
|
279 |
+
- The readings are stored in a "variable values" table within the database.
|
280 |
+
|
281 |
+
|
282 |
+
Linking variable names:
|
283 |
+
|
284 |
+
If the user needs to know the name of a variable, they must link the data to another
|
285 |
+
table that stores information about the types of variables.'
|
286 |
+
- 'What do measurement equipment measure?
|
287 |
+
|
288 |
+
Each equipment measures a physical magnitude, also known as a variable. Based
|
289 |
+
on the type of variable they measure, devices are classified into different categories.
|
290 |
+
|
291 |
+
|
292 |
+
Equipment classification:
|
293 |
+
|
294 |
+
- Primary meter: Assigned by default to equipments like orifice plates.
|
295 |
+
|
296 |
+
- Secondary meter: Assigned by default to equipments like transmitters.
|
297 |
+
|
298 |
+
- Tertiary meter: Used for other types of equipments.
|
299 |
+
|
300 |
+
|
301 |
+
Equipment types in the database:
|
302 |
+
|
303 |
+
The database includes a table listing all equipment types. Examples of equipment
|
304 |
+
types are:
|
305 |
+
|
306 |
+
- Differential pressure transmitters
|
307 |
+
|
308 |
+
- RTDs (Resistance Temperature Detectors)
|
309 |
+
|
310 |
+
- Orifice plates
|
311 |
+
|
312 |
+
- Multivariable transmitters
|
313 |
+
|
314 |
+
- Ultrasonic meters
|
315 |
+
|
316 |
+
|
317 |
+
Meteorological checks for equipments:
|
318 |
+
|
319 |
+
Each equipment type is assigned a meteorological check, which can be either:
|
320 |
+
|
321 |
+
- Calibration: To ensure measurement accuracy.
|
322 |
+
|
323 |
+
- Inspection: To verify proper functioning.
|
324 |
+
|
325 |
+
|
326 |
+
Data storage in tables:
|
327 |
+
|
328 |
+
The database also includes a separate table for equipment classifications, which
|
329 |
+
are:
|
330 |
+
|
331 |
+
- Primary meter
|
332 |
+
|
333 |
+
- Secondary meter
|
334 |
+
|
335 |
+
- Tertiary meter
|
336 |
+
|
337 |
+
So, an equipment has equipment types and this types has classifications.'
|
338 |
+
- 'What kind of data store an equipment?
|
339 |
+
|
340 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
341 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
342 |
+
|
343 |
+
|
344 |
+
Data storage:
|
345 |
+
|
346 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
347 |
+
This table contains the values of the variables captured by the equipments.
|
348 |
+
|
349 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
350 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
351 |
+
uncertainty.
|
352 |
+
|
353 |
+
- The values stored in the variable values table are **different** from variable
|
354 |
+
uncertainty values, which are calculated separately and represent the margin of
|
355 |
+
error.
|
356 |
+
|
357 |
+
|
358 |
+
Accessing the data:
|
359 |
+
|
360 |
+
- Users typically access the data by referring to the readings from the measurement
|
361 |
+
system, not directly from the individual equipments.
|
362 |
+
|
363 |
+
- The readings are stored in a "variable values" table within the database.
|
364 |
+
|
365 |
+
|
366 |
+
Linking variable names:
|
367 |
+
|
368 |
+
If the user needs to know the name of a variable, they must link the data to another
|
369 |
+
table that stores information about the types of variables.'
|
370 |
+
- source_sentence: What is the table structure for secondary equipment?
|
371 |
+
sentences:
|
372 |
+
- 'What kind of data store an equipment?
|
373 |
+
|
374 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
375 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
376 |
+
|
377 |
+
|
378 |
+
Data storage:
|
379 |
+
|
380 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
381 |
+
This table contains the values of the variables captured by the equipments.
|
382 |
+
|
383 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
384 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
385 |
+
uncertainty.
|
386 |
+
|
387 |
+
- The values stored in the variable values table are **different** from variable
|
388 |
+
uncertainty values, which are calculated separately and represent the margin of
|
389 |
+
error.
|
390 |
+
|
391 |
+
|
392 |
+
Accessing the data:
|
393 |
+
|
394 |
+
- Users typically access the data by referring to the readings from the measurement
|
395 |
+
system, not directly from the individual equipments.
|
396 |
+
|
397 |
+
- The readings are stored in a "variable values" table within the database.
|
398 |
+
|
399 |
+
|
400 |
+
Linking variable names:
|
401 |
+
|
402 |
+
If the user needs to know the name of a variable, they must link the data to another
|
403 |
+
table that stores information about the types of variables.'
|
404 |
+
- 'How are flow computers and measurement systems related?
|
405 |
+
|
406 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
407 |
+
system can only be assigned to one flow computer.
|
408 |
+
|
409 |
+
|
410 |
+
Database terminology:
|
411 |
+
|
412 |
+
In the database, this relationship is referred to as:
|
413 |
+
|
414 |
+
- Meter streams
|
415 |
+
|
416 |
+
- Meter runs
|
417 |
+
|
418 |
+
- Sections
|
419 |
+
|
420 |
+
|
421 |
+
Storage of the relationship:
|
422 |
+
|
423 |
+
The relationship between a flow computer and its assigned measurement system is
|
424 |
+
stored in a special table.
|
425 |
+
|
426 |
+
|
427 |
+
User context:
|
428 |
+
|
429 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
430 |
+
for a measurement system assigned to a specific flow computer.'
|
431 |
+
- 'How are flow computers and measurement systems related?
|
432 |
+
|
433 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
434 |
+
system can only be assigned to one flow computer.
|
435 |
+
|
436 |
+
|
437 |
+
Database terminology:
|
438 |
+
|
439 |
+
In the database, this relationship is referred to as:
|
440 |
+
|
441 |
+
- Meter streams
|
442 |
+
|
443 |
+
- Meter runs
|
444 |
+
|
445 |
+
- Sections
|
446 |
+
|
447 |
+
|
448 |
+
Storage of the relationship:
|
449 |
+
|
450 |
+
The relationship between a flow computer and its assigned measurement system is
|
451 |
+
stored in a special table.
|
452 |
+
|
453 |
+
|
454 |
+
User context:
|
455 |
+
|
456 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
457 |
+
for a measurement system assigned to a specific flow computer.'
|
458 |
+
datasets:
|
459 |
+
- Lauther/measuring-embeddings-v3
|
460 |
+
pipeline_tag: sentence-similarity
|
461 |
+
library_name: sentence-transformers
|
462 |
+
---
|
463 |
+
|
464 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large-instruct
|
465 |
+
|
466 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
467 |
+
|
468 |
+
## Model Details
|
469 |
+
|
470 |
+
### Model Description
|
471 |
+
- **Model Type:** Sentence Transformer
|
472 |
+
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
|
473 |
+
- **Maximum Sequence Length:** 512 tokens
|
474 |
+
- **Output Dimensionality:** 1024 dimensions
|
475 |
+
- **Similarity Function:** Cosine Similarity
|
476 |
+
- **Training Dataset:**
|
477 |
+
- [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
|
478 |
+
<!-- - **Language:** Unknown -->
|
479 |
+
<!-- - **License:** Unknown -->
|
480 |
+
|
481 |
+
### Model Sources
|
482 |
+
|
483 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
484 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
485 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
486 |
+
|
487 |
+
### Full Model Architecture
|
488 |
+
|
489 |
+
```
|
490 |
+
SentenceTransformer(
|
491 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
492 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
493 |
+
(2): Normalize()
|
494 |
+
)
|
495 |
+
```
|
496 |
+
|
497 |
+
## Usage
|
498 |
+
|
499 |
+
### Direct Usage (Sentence Transformers)
|
500 |
+
|
501 |
+
First install the Sentence Transformers library:
|
502 |
+
|
503 |
+
```bash
|
504 |
+
pip install -U sentence-transformers
|
505 |
+
```
|
506 |
+
|
507 |
+
Then you can load this model and run inference.
|
508 |
+
```python
|
509 |
+
from sentence_transformers import SentenceTransformer
|
510 |
+
|
511 |
+
# Download from the 🤗 Hub
|
512 |
+
model = SentenceTransformer("Lauther/measuring-embeddings-v3-multilingual-e5-large-instruct-20e")
|
513 |
+
# Run inference
|
514 |
+
sentences = [
|
515 |
+
'What is the table structure for secondary equipment?',
|
516 |
+
'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
|
517 |
+
'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
|
518 |
+
]
|
519 |
+
embeddings = model.encode(sentences)
|
520 |
+
print(embeddings.shape)
|
521 |
+
# [3, 1024]
|
522 |
+
|
523 |
+
# Get the similarity scores for the embeddings
|
524 |
+
similarities = model.similarity(embeddings, embeddings)
|
525 |
+
print(similarities.shape)
|
526 |
+
# [3, 3]
|
527 |
+
```
|
528 |
+
|
529 |
+
<!--
|
530 |
+
### Direct Usage (Transformers)
|
531 |
+
|
532 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
533 |
+
|
534 |
+
</details>
|
535 |
+
-->
|
536 |
+
|
537 |
+
<!--
|
538 |
+
### Downstream Usage (Sentence Transformers)
|
539 |
+
|
540 |
+
You can finetune this model on your own dataset.
|
541 |
+
|
542 |
+
<details><summary>Click to expand</summary>
|
543 |
+
|
544 |
+
</details>
|
545 |
+
-->
|
546 |
+
|
547 |
+
<!--
|
548 |
+
### Out-of-Scope Use
|
549 |
+
|
550 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
551 |
+
-->
|
552 |
+
|
553 |
+
<!--
|
554 |
+
## Bias, Risks and Limitations
|
555 |
+
|
556 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
557 |
+
-->
|
558 |
+
|
559 |
+
<!--
|
560 |
+
### Recommendations
|
561 |
+
|
562 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
563 |
+
-->
|
564 |
+
|
565 |
+
## Training Details
|
566 |
+
|
567 |
+
### Training Dataset
|
568 |
+
|
569 |
+
#### measuring-embeddings-v3
|
570 |
+
|
571 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
572 |
+
* Size: 7,552 training samples
|
573 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
574 |
+
* Approximate statistics based on the first 1000 samples:
|
575 |
+
| | sentence1 | sentence2 | score |
|
576 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
577 |
+
| type | string | string | float |
|
578 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
|
579 |
+
* Samples:
|
580 |
+
| sentence1 | sentence2 | score |
|
581 |
+
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
582 |
+
| <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
|
583 |
+
| <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
|
584 |
+
| <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
|
585 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
586 |
+
```json
|
587 |
+
{
|
588 |
+
"scale": 20.0,
|
589 |
+
"similarity_fct": "pairwise_cos_sim"
|
590 |
+
}
|
591 |
+
```
|
592 |
+
|
593 |
+
### Evaluation Dataset
|
594 |
+
|
595 |
+
#### measuring-embeddings-v3
|
596 |
+
|
597 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
598 |
+
* Size: 1,618 evaluation samples
|
599 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
600 |
+
* Approximate statistics based on the first 1000 samples:
|
601 |
+
| | sentence1 | sentence2 | score |
|
602 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
603 |
+
| type | string | string | float |
|
604 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
|
605 |
+
* Samples:
|
606 |
+
| sentence1 | sentence2 | score |
|
607 |
+
|:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
608 |
+
| <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
|
609 |
+
| <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
|
610 |
+
| <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
|
611 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
612 |
+
```json
|
613 |
+
{
|
614 |
+
"scale": 20.0,
|
615 |
+
"similarity_fct": "pairwise_cos_sim"
|
616 |
+
}
|
617 |
+
```
|
618 |
+
|
619 |
+
### Training Hyperparameters
|
620 |
+
#### Non-Default Hyperparameters
|
621 |
+
|
622 |
+
- `eval_strategy`: steps
|
623 |
+
- `per_device_train_batch_size`: 7
|
624 |
+
- `per_device_eval_batch_size`: 7
|
625 |
+
- `gradient_accumulation_steps`: 4
|
626 |
+
- `learning_rate`: 3e-05
|
627 |
+
- `num_train_epochs`: 20
|
628 |
+
- `warmup_ratio`: 0.1
|
629 |
+
|
630 |
+
#### All Hyperparameters
|
631 |
+
<details><summary>Click to expand</summary>
|
632 |
+
|
633 |
+
- `overwrite_output_dir`: False
|
634 |
+
- `do_predict`: False
|
635 |
+
- `eval_strategy`: steps
|
636 |
+
- `prediction_loss_only`: True
|
637 |
+
- `per_device_train_batch_size`: 7
|
638 |
+
- `per_device_eval_batch_size`: 7
|
639 |
+
- `per_gpu_train_batch_size`: None
|
640 |
+
- `per_gpu_eval_batch_size`: None
|
641 |
+
- `gradient_accumulation_steps`: 4
|
642 |
+
- `eval_accumulation_steps`: None
|
643 |
+
- `torch_empty_cache_steps`: None
|
644 |
+
- `learning_rate`: 3e-05
|
645 |
+
- `weight_decay`: 0.0
|
646 |
+
- `adam_beta1`: 0.9
|
647 |
+
- `adam_beta2`: 0.999
|
648 |
+
- `adam_epsilon`: 1e-08
|
649 |
+
- `max_grad_norm`: 1.0
|
650 |
+
- `num_train_epochs`: 20
|
651 |
+
- `max_steps`: -1
|
652 |
+
- `lr_scheduler_type`: linear
|
653 |
+
- `lr_scheduler_kwargs`: {}
|
654 |
+
- `warmup_ratio`: 0.1
|
655 |
+
- `warmup_steps`: 0
|
656 |
+
- `log_level`: passive
|
657 |
+
- `log_level_replica`: warning
|
658 |
+
- `log_on_each_node`: True
|
659 |
+
- `logging_nan_inf_filter`: True
|
660 |
+
- `save_safetensors`: True
|
661 |
+
- `save_on_each_node`: False
|
662 |
+
- `save_only_model`: False
|
663 |
+
- `restore_callback_states_from_checkpoint`: False
|
664 |
+
- `no_cuda`: False
|
665 |
+
- `use_cpu`: False
|
666 |
+
- `use_mps_device`: False
|
667 |
+
- `seed`: 42
|
668 |
+
- `data_seed`: None
|
669 |
+
- `jit_mode_eval`: False
|
670 |
+
- `use_ipex`: False
|
671 |
+
- `bf16`: False
|
672 |
+
- `fp16`: False
|
673 |
+
- `fp16_opt_level`: O1
|
674 |
+
- `half_precision_backend`: auto
|
675 |
+
- `bf16_full_eval`: False
|
676 |
+
- `fp16_full_eval`: False
|
677 |
+
- `tf32`: None
|
678 |
+
- `local_rank`: 0
|
679 |
+
- `ddp_backend`: None
|
680 |
+
- `tpu_num_cores`: None
|
681 |
+
- `tpu_metrics_debug`: False
|
682 |
+
- `debug`: []
|
683 |
+
- `dataloader_drop_last`: False
|
684 |
+
- `dataloader_num_workers`: 0
|
685 |
+
- `dataloader_prefetch_factor`: None
|
686 |
+
- `past_index`: -1
|
687 |
+
- `disable_tqdm`: False
|
688 |
+
- `remove_unused_columns`: True
|
689 |
+
- `label_names`: None
|
690 |
+
- `load_best_model_at_end`: False
|
691 |
+
- `ignore_data_skip`: False
|
692 |
+
- `fsdp`: []
|
693 |
+
- `fsdp_min_num_params`: 0
|
694 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
695 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
696 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
697 |
+
- `deepspeed`: None
|
698 |
+
- `label_smoothing_factor`: 0.0
|
699 |
+
- `optim`: adamw_torch
|
700 |
+
- `optim_args`: None
|
701 |
+
- `adafactor`: False
|
702 |
+
- `group_by_length`: False
|
703 |
+
- `length_column_name`: length
|
704 |
+
- `ddp_find_unused_parameters`: None
|
705 |
+
- `ddp_bucket_cap_mb`: None
|
706 |
+
- `ddp_broadcast_buffers`: False
|
707 |
+
- `dataloader_pin_memory`: True
|
708 |
+
- `dataloader_persistent_workers`: False
|
709 |
+
- `skip_memory_metrics`: True
|
710 |
+
- `use_legacy_prediction_loop`: False
|
711 |
+
- `push_to_hub`: False
|
712 |
+
- `resume_from_checkpoint`: None
|
713 |
+
- `hub_model_id`: None
|
714 |
+
- `hub_strategy`: every_save
|
715 |
+
- `hub_private_repo`: None
|
716 |
+
- `hub_always_push`: False
|
717 |
+
- `gradient_checkpointing`: False
|
718 |
+
- `gradient_checkpointing_kwargs`: None
|
719 |
+
- `include_inputs_for_metrics`: False
|
720 |
+
- `include_for_metrics`: []
|
721 |
+
- `eval_do_concat_batches`: True
|
722 |
+
- `fp16_backend`: auto
|
723 |
+
- `push_to_hub_model_id`: None
|
724 |
+
- `push_to_hub_organization`: None
|
725 |
+
- `mp_parameters`:
|
726 |
+
- `auto_find_batch_size`: False
|
727 |
+
- `full_determinism`: False
|
728 |
+
- `torchdynamo`: None
|
729 |
+
- `ray_scope`: last
|
730 |
+
- `ddp_timeout`: 1800
|
731 |
+
- `torch_compile`: False
|
732 |
+
- `torch_compile_backend`: None
|
733 |
+
- `torch_compile_mode`: None
|
734 |
+
- `dispatch_batches`: None
|
735 |
+
- `split_batches`: None
|
736 |
+
- `include_tokens_per_second`: False
|
737 |
+
- `include_num_input_tokens_seen`: False
|
738 |
+
- `neftune_noise_alpha`: None
|
739 |
+
- `optim_target_modules`: None
|
740 |
+
- `batch_eval_metrics`: False
|
741 |
+
- `eval_on_start`: False
|
742 |
+
- `use_liger_kernel`: False
|
743 |
+
- `eval_use_gather_object`: False
|
744 |
+
- `average_tokens_across_devices`: False
|
745 |
+
- `prompts`: None
|
746 |
+
- `batch_sampler`: batch_sampler
|
747 |
+
- `multi_dataset_batch_sampler`: proportional
|
748 |
+
|
749 |
+
</details>
|
750 |
+
|
751 |
+
### Training Logs
|
752 |
+
<details><summary>Click to expand</summary>
|
753 |
+
|
754 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
755 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
756 |
+
| 9.5153 | 2560 | 6.782 | - |
|
757 |
+
| 9.5524 | 2570 | 7.3027 | - |
|
758 |
+
| 9.5894 | 2580 | 7.3348 | - |
|
759 |
+
| 9.6265 | 2590 | 7.7864 | - |
|
760 |
+
| 9.6636 | 2600 | 6.3552 | - |
|
761 |
+
| 9.7006 | 2610 | 7.151 | - |
|
762 |
+
| 9.7377 | 2620 | 6.1664 | - |
|
763 |
+
| 9.7748 | 2630 | 6.0398 | - |
|
764 |
+
| 9.8119 | 2640 | 7.0452 | - |
|
765 |
+
| 9.8489 | 2650 | 7.2457 | - |
|
766 |
+
| 9.8860 | 2660 | 6.7531 | - |
|
767 |
+
| 9.9231 | 2670 | 6.7149 | - |
|
768 |
+
| 9.9601 | 2680 | 6.4635 | - |
|
769 |
+
| 9.9972 | 2690 | 6.2237 | - |
|
770 |
+
| 10.0371 | 2700 | 6.1798 | 2.9939 |
|
771 |
+
| 10.0741 | 2710 | 7.2224 | - |
|
772 |
+
| 10.1112 | 2720 | 6.5327 | - |
|
773 |
+
| 10.1483 | 2730 | 7.4686 | - |
|
774 |
+
| 10.1854 | 2740 | 6.1404 | - |
|
775 |
+
| 10.2224 | 2750 | 7.0005 | - |
|
776 |
+
| 10.2595 | 2760 | 5.7726 | - |
|
777 |
+
| 10.2966 | 2770 | 6.5327 | - |
|
778 |
+
| 10.3336 | 2780 | 7.5015 | - |
|
779 |
+
| 10.3707 | 2790 | 6.5526 | - |
|
780 |
+
| 10.4078 | 2800 | 6.2078 | - |
|
781 |
+
| 10.4449 | 2810 | 6.1 | - |
|
782 |
+
| 10.4819 | 2820 | 7.1027 | - |
|
783 |
+
| 10.5190 | 2830 | 8.639 | - |
|
784 |
+
| 10.5561 | 2840 | 6.9937 | - |
|
785 |
+
| 10.5931 | 2850 | 7.2734 | 2.8532 |
|
786 |
+
| 10.6302 | 2860 | 7.6321 | - |
|
787 |
+
| 10.6673 | 2870 | 7.5788 | - |
|
788 |
+
| 10.7044 | 2880 | 6.7864 | - |
|
789 |
+
| 10.7414 | 2890 | 7.4237 | - |
|
790 |
+
| 10.7785 | 2900 | 6.9813 | - |
|
791 |
+
| 10.8156 | 2910 | 6.6884 | - |
|
792 |
+
| 10.8526 | 2920 | 6.7464 | - |
|
793 |
+
| 10.8897 | 2930 | 7.7989 | - |
|
794 |
+
| 10.9268 | 2940 | 7.3568 | - |
|
795 |
+
| 10.9639 | 2950 | 8.6706 | - |
|
796 |
+
| 11.0 | 2960 | 6.5687 | - |
|
797 |
+
| 11.0371 | 2970 | 5.8992 | - |
|
798 |
+
| 11.0741 | 2980 | 6.4543 | - |
|
799 |
+
| 11.1112 | 2990 | 6.1386 | - |
|
800 |
+
| 11.1483 | 3000 | 6.9047 | 2.9147 |
|
801 |
+
| 11.1854 | 3010 | 7.405 | - |
|
802 |
+
| 11.2224 | 3020 | 7.5441 | - |
|
803 |
+
| 11.2595 | 3030 | 6.7524 | - |
|
804 |
+
| 11.2966 | 3040 | 7.698 | - |
|
805 |
+
| 11.3336 | 3050 | 7.6167 | - |
|
806 |
+
| 11.3707 | 3060 | 7.1516 | - |
|
807 |
+
| 11.4078 | 3070 | 6.7458 | - |
|
808 |
+
| 11.4449 | 3080 | 6.7608 | - |
|
809 |
+
| 11.4819 | 3090 | 7.1508 | - |
|
810 |
+
| 11.5190 | 3100 | 6.9155 | - |
|
811 |
+
| 11.5561 | 3110 | 6.6664 | - |
|
812 |
+
| 11.5931 | 3120 | 8.3841 | - |
|
813 |
+
| 11.6302 | 3130 | 7.1934 | - |
|
814 |
+
| 11.6673 | 3140 | 6.9681 | - |
|
815 |
+
| 11.7044 | 3150 | 7.2187 | 2.7509 |
|
816 |
+
| 11.7414 | 3160 | 7.3155 | - |
|
817 |
+
| 11.7785 | 3170 | 7.3103 | - |
|
818 |
+
| 11.8156 | 3180 | 7.1959 | - |
|
819 |
+
| 11.8526 | 3190 | 6.8164 | - |
|
820 |
+
| 11.8897 | 3200 | 7.5836 | - |
|
821 |
+
| 11.9268 | 3210 | 5.2671 | - |
|
822 |
+
| 11.9639 | 3220 | 6.4929 | - |
|
823 |
+
| 12.0 | 3230 | 7.0892 | - |
|
824 |
+
| 12.0371 | 3240 | 7.0877 | - |
|
825 |
+
| 12.0741 | 3250 | 5.8302 | - |
|
826 |
+
| 12.1112 | 3260 | 5.6145 | - |
|
827 |
+
| 12.1483 | 3270 | 6.5808 | - |
|
828 |
+
| 12.1854 | 3280 | 6.6826 | - |
|
829 |
+
| 12.2224 | 3290 | 5.9819 | - |
|
830 |
+
| 12.2595 | 3300 | 6.68 | 3.0175 |
|
831 |
+
| 12.2966 | 3310 | 6.1685 | - |
|
832 |
+
| 12.3336 | 3320 | 6.4473 | - |
|
833 |
+
| 12.3707 | 3330 | 6.3965 | - |
|
834 |
+
| 12.4078 | 3340 | 6.6278 | - |
|
835 |
+
| 12.4449 | 3350 | 5.4575 | - |
|
836 |
+
| 12.4819 | 3360 | 7.3019 | - |
|
837 |
+
| 12.5190 | 3370 | 7.4843 | - |
|
838 |
+
| 12.5561 | 3380 | 6.709 | - |
|
839 |
+
| 12.5931 | 3390 | 6.7168 | - |
|
840 |
+
| 12.6302 | 3400 | 7.0223 | - |
|
841 |
+
| 12.6673 | 3410 | 6.5089 | - |
|
842 |
+
| 12.7044 | 3420 | 6.5094 | - |
|
843 |
+
| 12.7414 | 3430 | 7.2317 | - |
|
844 |
+
| 12.7785 | 3440 | 6.6885 | - |
|
845 |
+
| 12.8156 | 3450 | 6.9693 | 2.8462 |
|
846 |
+
| 12.8526 | 3460 | 6.8242 | - |
|
847 |
+
| 12.8897 | 3470 | 6.6899 | - |
|
848 |
+
| 12.9268 | 3480 | 6.9113 | - |
|
849 |
+
| 12.9639 | 3490 | 7.1903 | - |
|
850 |
+
| 13.0 | 3500 | 7.3286 | - |
|
851 |
+
| 13.0371 | 3510 | 6.5465 | - |
|
852 |
+
| 13.0741 | 3520 | 5.6804 | - |
|
853 |
+
| 13.1112 | 3530 | 5.6412 | - |
|
854 |
+
| 13.1483 | 3540 | 6.6161 | - |
|
855 |
+
| 13.1854 | 3550 | 5.761 | - |
|
856 |
+
| 13.2224 | 3560 | 5.5669 | - |
|
857 |
+
| 13.2595 | 3570 | 5.6184 | - |
|
858 |
+
| 13.2966 | 3580 | 6.2996 | - |
|
859 |
+
| 13.3336 | 3590 | 4.99 | - |
|
860 |
+
| 13.3707 | 3600 | 5.9974 | 3.2358 |
|
861 |
+
| 13.4078 | 3610 | 5.6962 | - |
|
862 |
+
| 13.4449 | 3620 | 6.3662 | - |
|
863 |
+
| 13.4819 | 3630 | 7.0398 | - |
|
864 |
+
| 13.5190 | 3640 | 7.7358 | - |
|
865 |
+
| 13.5561 | 3650 | 7.9063 | - |
|
866 |
+
| 13.5931 | 3660 | 5.7823 | - |
|
867 |
+
| 13.6302 | 3670 | 6.9861 | - |
|
868 |
+
| 13.6673 | 3680 | 7.2855 | - |
|
869 |
+
| 13.7044 | 3690 | 5.6785 | - |
|
870 |
+
| 13.7414 | 3700 | 6.4071 | - |
|
871 |
+
| 13.7785 | 3710 | 6.4294 | - |
|
872 |
+
| 13.8156 | 3720 | 6.0842 | - |
|
873 |
+
| 13.8526 | 3730 | 5.9422 | - |
|
874 |
+
| 13.8897 | 3740 | 7.0778 | - |
|
875 |
+
| 13.9268 | 3750 | 8.1597 | 3.0093 |
|
876 |
+
| 13.9639 | 3760 | 6.3154 | - |
|
877 |
+
| 14.0 | 3770 | 6.2416 | - |
|
878 |
+
| 14.0371 | 3780 | 5.9958 | - |
|
879 |
+
| 14.0741 | 3790 | 5.7032 | - |
|
880 |
+
| 14.1112 | 3800 | 4.9524 | - |
|
881 |
+
| 14.1483 | 3810 | 5.386 | - |
|
882 |
+
| 14.1854 | 3820 | 5.6353 | - |
|
883 |
+
| 14.2224 | 3830 | 5.0873 | - |
|
884 |
+
| 14.2595 | 3840 | 4.9255 | - |
|
885 |
+
| 14.2966 | 3850 | 5.1423 | - |
|
886 |
+
| 14.3336 | 3860 | 6.0775 | - |
|
887 |
+
| 14.3707 | 3870 | 4.5073 | - |
|
888 |
+
| 14.4078 | 3880 | 6.8347 | - |
|
889 |
+
| 14.4449 | 3890 | 6.5397 | - |
|
890 |
+
| 14.4819 | 3900 | 7.2143 | 3.3080 |
|
891 |
+
| 14.5190 | 3910 | 6.1123 | - |
|
892 |
+
| 14.5561 | 3920 | 6.6048 | - |
|
893 |
+
| 14.5931 | 3930 | 6.3464 | - |
|
894 |
+
| 14.6302 | 3940 | 6.3618 | - |
|
895 |
+
| 14.6673 | 3950 | 6.5718 | - |
|
896 |
+
| 14.7044 | 3960 | 5.9785 | - |
|
897 |
+
| 14.7414 | 3970 | 6.5758 | - |
|
898 |
+
| 14.7785 | 3980 | 6.4308 | - |
|
899 |
+
| 14.8156 | 3990 | 6.0208 | - |
|
900 |
+
| 14.8526 | 4000 | 6.0303 | - |
|
901 |
+
| 14.8897 | 4010 | 6.6396 | - |
|
902 |
+
| 14.9268 | 4020 | 6.0184 | - |
|
903 |
+
| 14.9639 | 4030 | 6.6248 | - |
|
904 |
+
| 15.0 | 4040 | 6.4538 | - |
|
905 |
+
| 15.0371 | 4050 | 6.4742 | 3.1761 |
|
906 |
+
| 15.0741 | 4060 | 5.5295 | - |
|
907 |
+
| 15.1112 | 4070 | 6.8753 | - |
|
908 |
+
| 15.1483 | 4080 | 5.639 | - |
|
909 |
+
| 15.1854 | 4090 | 5.6232 | - |
|
910 |
+
| 15.2224 | 4100 | 6.3026 | - |
|
911 |
+
| 15.2595 | 4110 | 6.1182 | - |
|
912 |
+
| 15.2966 | 4120 | 5.4736 | - |
|
913 |
+
| 15.3336 | 4130 | 6.2961 | - |
|
914 |
+
| 15.3707 | 4140 | 5.4742 | - |
|
915 |
+
| 15.4078 | 4150 | 5.4707 | - |
|
916 |
+
| 15.4449 | 4160 | 4.7272 | - |
|
917 |
+
| 15.4819 | 4170 | 6.1026 | - |
|
918 |
+
| 15.5190 | 4180 | 5.0468 | - |
|
919 |
+
| 15.5561 | 4190 | 5.5796 | - |
|
920 |
+
| 15.5931 | 4200 | 6.9046 | 3.1433 |
|
921 |
+
| 15.6302 | 4210 | 5.6123 | - |
|
922 |
+
| 15.6673 | 4220 | 6.7246 | - |
|
923 |
+
| 15.7044 | 4230 | 5.7076 | - |
|
924 |
+
| 15.7414 | 4240 | 6.6772 | - |
|
925 |
+
| 15.7785 | 4250 | 5.6038 | - |
|
926 |
+
| 15.8156 | 4260 | 4.9544 | - |
|
927 |
+
| 15.8526 | 4270 | 5.0661 | - |
|
928 |
+
| 15.8897 | 4280 | 5.291 | - |
|
929 |
+
| 15.9268 | 4290 | 6.6652 | - |
|
930 |
+
| 15.9639 | 4300 | 5.6797 | - |
|
931 |
+
| 16.0 | 4310 | 5.1129 | - |
|
932 |
+
| 16.0371 | 4320 | 5.4445 | - |
|
933 |
+
| 16.0741 | 4330 | 4.8946 | - |
|
934 |
+
| 16.1112 | 4340 | 6.3929 | - |
|
935 |
+
| 16.1483 | 4350 | 6.0633 | 3.1426 |
|
936 |
+
| 16.1854 | 4360 | 5.522 | - |
|
937 |
+
| 16.2224 | 4370 | 4.7067 | - |
|
938 |
+
| 16.2595 | 4380 | 5.4688 | - |
|
939 |
+
| 16.2966 | 4390 | 5.6009 | - |
|
940 |
+
| 16.3336 | 4400 | 5.1376 | - |
|
941 |
+
| 16.3707 | 4410 | 4.5196 | - |
|
942 |
+
| 16.4078 | 4420 | 5.5109 | - |
|
943 |
+
| 16.4449 | 4430 | 5.1888 | - |
|
944 |
+
| 16.4819 | 4440 | 6.0305 | - |
|
945 |
+
| 16.5190 | 4450 | 5.2791 | - |
|
946 |
+
| 16.5561 | 4460 | 5.4005 | - |
|
947 |
+
| 16.5931 | 4470 | 5.255 | - |
|
948 |
+
| 16.6302 | 4480 | 6.2026 | - |
|
949 |
+
| 16.6673 | 4490 | 6.6388 | - |
|
950 |
+
| 16.7044 | 4500 | 5.6138 | 3.2812 |
|
951 |
+
| 16.7414 | 4510 | 4.7913 | - |
|
952 |
+
| 16.7785 | 4520 | 5.6675 | - |
|
953 |
+
| 16.8156 | 4530 | 5.8975 | - |
|
954 |
+
| 16.8526 | 4540 | 5.4597 | - |
|
955 |
+
| 16.8897 | 4550 | 5.137 | - |
|
956 |
+
| 16.9268 | 4560 | 4.5395 | - |
|
957 |
+
| 16.9639 | 4570 | 4.6304 | - |
|
958 |
+
| 17.0 | 4580 | 5.8098 | - |
|
959 |
+
| 17.0371 | 4590 | 4.0267 | - |
|
960 |
+
| 17.0741 | 4600 | 4.9194 | - |
|
961 |
+
| 17.1112 | 4610 | 4.1852 | - |
|
962 |
+
| 17.1483 | 4620 | 5.129 | - |
|
963 |
+
| 17.1854 | 4630 | 4.469 | - |
|
964 |
+
| 17.2224 | 4640 | 5.4298 | - |
|
965 |
+
| 17.2595 | 4650 | 4.5234 | 3.3447 |
|
966 |
+
| 17.2966 | 4660 | 4.6856 | - |
|
967 |
+
| 17.3336 | 4670 | 6.3431 | - |
|
968 |
+
| 17.3707 | 4680 | 5.347 | - |
|
969 |
+
| 17.4078 | 4690 | 4.9223 | - |
|
970 |
+
| 17.4449 | 4700 | 5.4404 | - |
|
971 |
+
| 17.4819 | 4710 | 4.916 | - |
|
972 |
+
| 17.5190 | 4720 | 6.1744 | - |
|
973 |
+
| 17.5561 | 4730 | 4.8039 | - |
|
974 |
+
| 17.5931 | 4740 | 5.2276 | - |
|
975 |
+
| 17.6302 | 4750 | 4.4189 | - |
|
976 |
+
| 17.6673 | 4760 | 4.1434 | - |
|
977 |
+
| 17.7044 | 4770 | 4.9443 | - |
|
978 |
+
| 17.7414 | 4780 | 5.6975 | - |
|
979 |
+
| 17.7785 | 4790 | 4.6667 | - |
|
980 |
+
| 17.8156 | 4800 | 4.9876 | 3.2924 |
|
981 |
+
| 17.8526 | 4810 | 4.4342 | - |
|
982 |
+
| 17.8897 | 4820 | 5.2595 | - |
|
983 |
+
| 17.9268 | 4830 | 5.6566 | - |
|
984 |
+
| 17.9639 | 4840 | 5.5452 | - |
|
985 |
+
| 18.0 | 4850 | 4.4986 | - |
|
986 |
+
| 18.0371 | 4860 | 4.8155 | - |
|
987 |
+
| 18.0741 | 4870 | 4.2278 | - |
|
988 |
+
| 18.1112 | 4880 | 5.4733 | - |
|
989 |
+
| 18.1483 | 4890 | 4.2394 | - |
|
990 |
+
| 18.1854 | 4900 | 5.1253 | - |
|
991 |
+
| 18.2224 | 4910 | 4.7498 | - |
|
992 |
+
| 18.2595 | 4920 | 4.9775 | - |
|
993 |
+
| 18.2966 | 4930 | 4.797 | - |
|
994 |
+
| 18.3336 | 4940 | 4.5694 | - |
|
995 |
+
| 18.3707 | 4950 | 4.6192 | 3.6615 |
|
996 |
+
| 18.4078 | 4960 | 5.8114 | - |
|
997 |
+
| 18.4449 | 4970 | 4.8035 | - |
|
998 |
+
| 18.4819 | 4980 | 4.6944 | - |
|
999 |
+
| 18.5190 | 4990 | 4.8664 | - |
|
1000 |
+
| 18.5561 | 5000 | 4.6916 | - |
|
1001 |
+
| 18.5931 | 5010 | 4.3352 | - |
|
1002 |
+
| 18.6302 | 5020 | 5.9779 | - |
|
1003 |
+
| 18.6673 | 5030 | 4.7813 | - |
|
1004 |
+
| 18.7044 | 5040 | 4.632 | - |
|
1005 |
+
| 18.7414 | 5050 | 4.7411 | - |
|
1006 |
+
| 18.7785 | 5060 | 3.6489 | - |
|
1007 |
+
| 18.8156 | 5070 | 4.5373 | - |
|
1008 |
+
| 18.8526 | 5080 | 5.6129 | - |
|
1009 |
+
| 18.8897 | 5090 | 4.8933 | - |
|
1010 |
+
| 18.9268 | 5100 | 4.27 | 3.6957 |
|
1011 |
+
| 18.9639 | 5110 | 4.5338 | - |
|
1012 |
+
| 19.0 | 5120 | 5.5175 | - |
|
1013 |
+
| 19.0371 | 5130 | 5.0835 | - |
|
1014 |
+
| 19.0741 | 5140 | 4.6826 | - |
|
1015 |
+
| 19.1112 | 5150 | 4.5391 | - |
|
1016 |
+
| 19.1483 | 5160 | 5.3723 | - |
|
1017 |
+
| 19.1854 | 5170 | 4.8095 | - |
|
1018 |
+
| 19.2224 | 5180 | 4.7402 | - |
|
1019 |
+
| 19.2595 | 5190 | 4.0488 | - |
|
1020 |
+
| 19.2966 | 5200 | 3.6424 | - |
|
1021 |
+
| 19.3336 | 5210 | 4.2256 | - |
|
1022 |
+
| 19.3707 | 5220 | 4.4607 | - |
|
1023 |
+
| 19.4078 | 5230 | 3.5702 | - |
|
1024 |
+
| 19.4449 | 5240 | 4.3062 | - |
|
1025 |
+
| 19.4819 | 5250 | 4.2919 | 3.6594 |
|
1026 |
+
| 19.5190 | 5260 | 4.6985 | - |
|
1027 |
+
| 19.5561 | 5270 | 4.6907 | - |
|
1028 |
+
| 19.5931 | 5280 | 4.3865 | - |
|
1029 |
+
| 19.6302 | 5290 | 3.9818 | - |
|
1030 |
+
| 19.6673 | 5300 | 4.3166 | - |
|
1031 |
+
| 19.7044 | 5310 | 4.9131 | - |
|
1032 |
+
| 19.7414 | 5320 | 4.7641 | - |
|
1033 |
+
| 19.7785 | 5330 | 5.419 | - |
|
1034 |
+
| 19.8156 | 5340 | 4.068 | - |
|
1035 |
+
| 19.8526 | 5350 | 4.1094 | - |
|
1036 |
+
| 19.8897 | 5360 | 5.2279 | - |
|
1037 |
+
| 19.9268 | 5370 | 4.4818 | - |
|
1038 |
+
| 19.9639 | 5380 | 4.3103 | - |
|
1039 |
+
|
1040 |
+
</details>
|
1041 |
+
|
1042 |
+
### Framework Versions
|
1043 |
+
- Python: 3.11.0
|
1044 |
+
- Sentence Transformers: 3.4.0
|
1045 |
+
- Transformers: 4.48.1
|
1046 |
+
- PyTorch: 2.5.1+cu124
|
1047 |
+
- Accelerate: 1.3.0
|
1048 |
+
- Datasets: 3.2.0
|
1049 |
+
- Tokenizers: 0.21.0
|
1050 |
+
|
1051 |
+
## Citation
|
1052 |
+
|
1053 |
+
### BibTeX
|
1054 |
+
|
1055 |
+
#### Sentence Transformers
|
1056 |
+
```bibtex
|
1057 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1058 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1059 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1060 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1061 |
+
month = "11",
|
1062 |
+
year = "2019",
|
1063 |
+
publisher = "Association for Computational Linguistics",
|
1064 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1065 |
+
}
|
1066 |
+
```
|
1067 |
+
|
1068 |
+
#### CoSENTLoss
|
1069 |
+
```bibtex
|
1070 |
+
@online{kexuefm-8847,
|
1071 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
1072 |
+
author={Su Jianlin},
|
1073 |
+
year={2022},
|
1074 |
+
month={Jan},
|
1075 |
+
url={https://kexue.fm/archives/8847},
|
1076 |
+
}
|
1077 |
+
```
|
1078 |
+
|
1079 |
+
<!--
|
1080 |
+
## Glossary
|
1081 |
+
|
1082 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1083 |
+
-->
|
1084 |
+
|
1085 |
+
<!--
|
1086 |
+
## Model Card Authors
|
1087 |
+
|
1088 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1089 |
+
-->
|
1090 |
+
|
1091 |
+
<!--
|
1092 |
+
## Model Card Contact
|
1093 |
+
|
1094 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1095 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-large-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aca6f2662c641a9490874428fd31456882c4bb2907af32f94152fb87b7038c1
|
3 |
+
size 2239607176
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
55 |
+
"unk_token": "<unk>"
|
56 |
+
}
|