Lauther commited on
Commit
656aca9
·
verified ·
1 Parent(s): 1f58fcf

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1095 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7552
8
+ - loss:CoSENTLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: How are calibration points linked to equipment?
12
+ sentences:
13
+ - 'How are flow computers and measurement systems related?
14
+
15
+ Flow computers can have multiple systems assigned to them. However, a measurement
16
+ system can only be assigned to one flow computer.
17
+
18
+
19
+ Database terminology:
20
+
21
+ In the database, this relationship is referred to as:
22
+
23
+ - Meter streams
24
+
25
+ - Meter runs
26
+
27
+ - Sections
28
+
29
+
30
+ Storage of the relationship:
31
+
32
+ The relationship between a flow computer and its assigned measurement system is
33
+ stored in a special table.
34
+
35
+
36
+ User context:
37
+
38
+ When a user refers to a "meter stream," they are indicating that they are searching
39
+ for a measurement system assigned to a specific flow computer.'
40
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
41
+ \ daily or hourly reports to provide users with operational data. These reports\
42
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
43
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
44
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
45
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
46
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
47
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
48
+ \ are linked to a Modbus table. This table contains the names corresponding to\
49
+ \ each value in the reports, making it easier to interpret the data."
50
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
51
+ \ and reliability of results obtained from equipment or measurement systems. It\
52
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
53
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
54
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
55
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
56
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
57
+ \ serves as a starting point for further calculations related to the equipment.\n\
58
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
59
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
60
+ \ the individual variables (magnitudes) and represents the combined margin of\
61
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
62
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
63
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
64
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
65
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
66
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
67
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
68
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
69
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
70
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
71
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
72
+ - To find the uncertainty of the measurement system, join the measurement systems\
73
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
74
+ \ of a specific variable (magnitude), join the measurement systems table with\
75
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
76
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
77
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
78
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
79
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
80
+ \ systems table + uncertainty of magnitudes table)."
81
+ - source_sentence: What is the primary key of the flow computer table?
82
+ sentences:
83
+ - 'What is equipment calibration?
84
+
85
+ Calibration is a metrological verification process used to ensure the accuracy
86
+ of measurement equipment. It is performed periodically, based on intervals set
87
+ by the company or a regulatory body.
88
+
89
+
90
+ Purpose of calibration:
91
+
92
+ The calibration process corrects any deviations in how the equipment measures
93
+ physical magnitudes (variables). This ensures the equipment provides accurate
94
+ and reliable data.
95
+
96
+
97
+ Calibration cycles:
98
+
99
+ There are two main calibration cycles:
100
+
101
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
102
+ are made. This cycle is almost always implemented.
103
+
104
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
105
+ are made. This cycle is used depending on regulatory requirements.
106
+
107
+
108
+ Calibration uncertainty:
109
+
110
+ - Uncertainty is included in the results of a calibration.
111
+
112
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
113
+ which also affects the uncertainty of the measured variable or magnitude.'
114
+ - 'What is equipment calibration?
115
+
116
+ Calibration is a metrological verification process used to ensure the accuracy
117
+ of measurement equipment. It is performed periodically, based on intervals set
118
+ by the company or a regulatory body.
119
+
120
+
121
+ Purpose of calibration:
122
+
123
+ The calibration process corrects any deviations in how the equipment measures
124
+ physical magnitudes (variables). This ensures the equipment provides accurate
125
+ and reliable data.
126
+
127
+
128
+ Calibration cycles:
129
+
130
+ There are two main calibration cycles:
131
+
132
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
133
+ are made. This cycle is almost always implemented.
134
+
135
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
136
+ are made. This cycle is used depending on regulatory requirements.
137
+
138
+
139
+ Calibration uncertainty:
140
+
141
+ - Uncertainty is included in the results of a calibration.
142
+
143
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
144
+ which also affects the uncertainty of the measured variable or magnitude.'
145
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
146
+ \ daily or hourly reports to provide users with operational data. These reports\
147
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
148
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
149
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
150
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
151
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
152
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
153
+ \ are linked to a Modbus table. This table contains the names corresponding to\
154
+ \ each value in the reports, making it easier to interpret the data."
155
+ - source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
156
+ result for the specified tag and date?
157
+ sentences:
158
+ - 'What is equipment calibration?
159
+
160
+ Calibration is a metrological verification process used to ensure the accuracy
161
+ of measurement equipment. It is performed periodically, based on intervals set
162
+ by the company or a regulatory body.
163
+
164
+
165
+ Purpose of calibration:
166
+
167
+ The calibration process corrects any deviations in how the equipment measures
168
+ physical magnitudes (variables). This ensures the equipment provides accurate
169
+ and reliable data.
170
+
171
+
172
+ Calibration cycles:
173
+
174
+ There are two main calibration cycles:
175
+
176
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
177
+ are made. This cycle is almost always implemented.
178
+
179
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
180
+ are made. This cycle is used depending on regulatory requirements.
181
+
182
+
183
+ Calibration uncertainty:
184
+
185
+ - Uncertainty is included in the results of a calibration.
186
+
187
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
188
+ which also affects the uncertainty of the measured variable or magnitude.'
189
+ - 'What kind of data store an equipment?
190
+
191
+ Equipments can capture meteorological data, such as pressure, temperature, and
192
+ volume (magnitudes). This data is essential for users to perform various calculations.
193
+
194
+
195
+ Data storage:
196
+
197
+ - The measured values are stored in a special table in the database for magnitudes.
198
+ This table contains the values of the variables captured by the equipments.
199
+
200
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
201
+ temperature, or volume readings). **They are not calculated values**, such as
202
+ uncertainty.
203
+
204
+ - The values stored in the variable values table are **different** from variable
205
+ uncertainty values, which are calculated separately and represent the margin of
206
+ error.
207
+
208
+
209
+ Accessing the data:
210
+
211
+ - Users typically access the data by referring to the readings from the measurement
212
+ system, not directly from the individual equipments.
213
+
214
+ - The readings are stored in a "variable values" table within the database.
215
+
216
+
217
+ Linking variable names:
218
+
219
+ If the user needs to know the name of a variable, they must link the data to another
220
+ table that stores information about the types of variables.'
221
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
222
+ \ and reliability of results obtained from equipment or measurement systems. It\
223
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
224
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
225
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
226
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
227
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
228
+ \ serves as a starting point for further calculations related to the equipment.\n\
229
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
230
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
231
+ \ the individual variables (magnitudes) and represents the combined margin of\
232
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
233
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
234
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
235
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
236
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
237
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
238
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
239
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
240
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
241
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
242
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
243
+ - To find the uncertainty of the measurement system, join the measurement systems\
244
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
245
+ \ of a specific variable (magnitude), join the measurement systems table with\
246
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
247
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
248
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
249
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
250
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
251
+ \ systems table + uncertainty of magnitudes table)."
252
+ - source_sentence: How are the secondary equipment and measurement system related?
253
+ sentences:
254
+ - 'What kind of data store an equipment?
255
+
256
+ Equipments can capture meteorological data, such as pressure, temperature, and
257
+ volume (magnitudes). This data is essential for users to perform various calculations.
258
+
259
+
260
+ Data storage:
261
+
262
+ - The measured values are stored in a special table in the database for magnitudes.
263
+ This table contains the values of the variables captured by the equipments.
264
+
265
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
266
+ temperature, or volume readings). **They are not calculated values**, such as
267
+ uncertainty.
268
+
269
+ - The values stored in the variable values table are **different** from variable
270
+ uncertainty values, which are calculated separately and represent the margin of
271
+ error.
272
+
273
+
274
+ Accessing the data:
275
+
276
+ - Users typically access the data by referring to the readings from the measurement
277
+ system, not directly from the individual equipments.
278
+
279
+ - The readings are stored in a "variable values" table within the database.
280
+
281
+
282
+ Linking variable names:
283
+
284
+ If the user needs to know the name of a variable, they must link the data to another
285
+ table that stores information about the types of variables.'
286
+ - 'What do measurement equipment measure?
287
+
288
+ Each equipment measures a physical magnitude, also known as a variable. Based
289
+ on the type of variable they measure, devices are classified into different categories.
290
+
291
+
292
+ Equipment classification:
293
+
294
+ - Primary meter: Assigned by default to equipments like orifice plates.
295
+
296
+ - Secondary meter: Assigned by default to equipments like transmitters.
297
+
298
+ - Tertiary meter: Used for other types of equipments.
299
+
300
+
301
+ Equipment types in the database:
302
+
303
+ The database includes a table listing all equipment types. Examples of equipment
304
+ types are:
305
+
306
+ - Differential pressure transmitters
307
+
308
+ - RTDs (Resistance Temperature Detectors)
309
+
310
+ - Orifice plates
311
+
312
+ - Multivariable transmitters
313
+
314
+ - Ultrasonic meters
315
+
316
+
317
+ Meteorological checks for equipments:
318
+
319
+ Each equipment type is assigned a meteorological check, which can be either:
320
+
321
+ - Calibration: To ensure measurement accuracy.
322
+
323
+ - Inspection: To verify proper functioning.
324
+
325
+
326
+ Data storage in tables:
327
+
328
+ The database also includes a separate table for equipment classifications, which
329
+ are:
330
+
331
+ - Primary meter
332
+
333
+ - Secondary meter
334
+
335
+ - Tertiary meter
336
+
337
+ So, an equipment has equipment types and this types has classifications.'
338
+ - 'What kind of data store an equipment?
339
+
340
+ Equipments can capture meteorological data, such as pressure, temperature, and
341
+ volume (magnitudes). This data is essential for users to perform various calculations.
342
+
343
+
344
+ Data storage:
345
+
346
+ - The measured values are stored in a special table in the database for magnitudes.
347
+ This table contains the values of the variables captured by the equipments.
348
+
349
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
350
+ temperature, or volume readings). **They are not calculated values**, such as
351
+ uncertainty.
352
+
353
+ - The values stored in the variable values table are **different** from variable
354
+ uncertainty values, which are calculated separately and represent the margin of
355
+ error.
356
+
357
+
358
+ Accessing the data:
359
+
360
+ - Users typically access the data by referring to the readings from the measurement
361
+ system, not directly from the individual equipments.
362
+
363
+ - The readings are stored in a "variable values" table within the database.
364
+
365
+
366
+ Linking variable names:
367
+
368
+ If the user needs to know the name of a variable, they must link the data to another
369
+ table that stores information about the types of variables.'
370
+ - source_sentence: What is the table structure for secondary equipment?
371
+ sentences:
372
+ - 'What kind of data store an equipment?
373
+
374
+ Equipments can capture meteorological data, such as pressure, temperature, and
375
+ volume (magnitudes). This data is essential for users to perform various calculations.
376
+
377
+
378
+ Data storage:
379
+
380
+ - The measured values are stored in a special table in the database for magnitudes.
381
+ This table contains the values of the variables captured by the equipments.
382
+
383
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
384
+ temperature, or volume readings). **They are not calculated values**, such as
385
+ uncertainty.
386
+
387
+ - The values stored in the variable values table are **different** from variable
388
+ uncertainty values, which are calculated separately and represent the margin of
389
+ error.
390
+
391
+
392
+ Accessing the data:
393
+
394
+ - Users typically access the data by referring to the readings from the measurement
395
+ system, not directly from the individual equipments.
396
+
397
+ - The readings are stored in a "variable values" table within the database.
398
+
399
+
400
+ Linking variable names:
401
+
402
+ If the user needs to know the name of a variable, they must link the data to another
403
+ table that stores information about the types of variables.'
404
+ - 'How are flow computers and measurement systems related?
405
+
406
+ Flow computers can have multiple systems assigned to them. However, a measurement
407
+ system can only be assigned to one flow computer.
408
+
409
+
410
+ Database terminology:
411
+
412
+ In the database, this relationship is referred to as:
413
+
414
+ - Meter streams
415
+
416
+ - Meter runs
417
+
418
+ - Sections
419
+
420
+
421
+ Storage of the relationship:
422
+
423
+ The relationship between a flow computer and its assigned measurement system is
424
+ stored in a special table.
425
+
426
+
427
+ User context:
428
+
429
+ When a user refers to a "meter stream," they are indicating that they are searching
430
+ for a measurement system assigned to a specific flow computer.'
431
+ - 'How are flow computers and measurement systems related?
432
+
433
+ Flow computers can have multiple systems assigned to them. However, a measurement
434
+ system can only be assigned to one flow computer.
435
+
436
+
437
+ Database terminology:
438
+
439
+ In the database, this relationship is referred to as:
440
+
441
+ - Meter streams
442
+
443
+ - Meter runs
444
+
445
+ - Sections
446
+
447
+
448
+ Storage of the relationship:
449
+
450
+ The relationship between a flow computer and its assigned measurement system is
451
+ stored in a special table.
452
+
453
+
454
+ User context:
455
+
456
+ When a user refers to a "meter stream," they are indicating that they are searching
457
+ for a measurement system assigned to a specific flow computer.'
458
+ datasets:
459
+ - Lauther/measuring-embeddings-v3
460
+ pipeline_tag: sentence-similarity
461
+ library_name: sentence-transformers
462
+ ---
463
+
464
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
465
+
466
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
467
+
468
+ ## Model Details
469
+
470
+ ### Model Description
471
+ - **Model Type:** Sentence Transformer
472
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
473
+ - **Maximum Sequence Length:** 512 tokens
474
+ - **Output Dimensionality:** 1024 dimensions
475
+ - **Similarity Function:** Cosine Similarity
476
+ - **Training Dataset:**
477
+ - [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
478
+ <!-- - **Language:** Unknown -->
479
+ <!-- - **License:** Unknown -->
480
+
481
+ ### Model Sources
482
+
483
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
484
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
485
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
486
+
487
+ ### Full Model Architecture
488
+
489
+ ```
490
+ SentenceTransformer(
491
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
492
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
493
+ (2): Normalize()
494
+ )
495
+ ```
496
+
497
+ ## Usage
498
+
499
+ ### Direct Usage (Sentence Transformers)
500
+
501
+ First install the Sentence Transformers library:
502
+
503
+ ```bash
504
+ pip install -U sentence-transformers
505
+ ```
506
+
507
+ Then you can load this model and run inference.
508
+ ```python
509
+ from sentence_transformers import SentenceTransformer
510
+
511
+ # Download from the 🤗 Hub
512
+ model = SentenceTransformer("Lauther/measuring-embeddings-v3-multilingual-e5-large-instruct-20e")
513
+ # Run inference
514
+ sentences = [
515
+ 'What is the table structure for secondary equipment?',
516
+ 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
517
+ 'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
518
+ ]
519
+ embeddings = model.encode(sentences)
520
+ print(embeddings.shape)
521
+ # [3, 1024]
522
+
523
+ # Get the similarity scores for the embeddings
524
+ similarities = model.similarity(embeddings, embeddings)
525
+ print(similarities.shape)
526
+ # [3, 3]
527
+ ```
528
+
529
+ <!--
530
+ ### Direct Usage (Transformers)
531
+
532
+ <details><summary>Click to see the direct usage in Transformers</summary>
533
+
534
+ </details>
535
+ -->
536
+
537
+ <!--
538
+ ### Downstream Usage (Sentence Transformers)
539
+
540
+ You can finetune this model on your own dataset.
541
+
542
+ <details><summary>Click to expand</summary>
543
+
544
+ </details>
545
+ -->
546
+
547
+ <!--
548
+ ### Out-of-Scope Use
549
+
550
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
551
+ -->
552
+
553
+ <!--
554
+ ## Bias, Risks and Limitations
555
+
556
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
557
+ -->
558
+
559
+ <!--
560
+ ### Recommendations
561
+
562
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
563
+ -->
564
+
565
+ ## Training Details
566
+
567
+ ### Training Dataset
568
+
569
+ #### measuring-embeddings-v3
570
+
571
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
572
+ * Size: 7,552 training samples
573
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
574
+ * Approximate statistics based on the first 1000 samples:
575
+ | | sentence1 | sentence2 | score |
576
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
577
+ | type | string | string | float |
578
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
579
+ * Samples:
580
+ | sentence1 | sentence2 | score |
581
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
582
+ | <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
583
+ | <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
584
+ | <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
585
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
586
+ ```json
587
+ {
588
+ "scale": 20.0,
589
+ "similarity_fct": "pairwise_cos_sim"
590
+ }
591
+ ```
592
+
593
+ ### Evaluation Dataset
594
+
595
+ #### measuring-embeddings-v3
596
+
597
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
598
+ * Size: 1,618 evaluation samples
599
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
600
+ * Approximate statistics based on the first 1000 samples:
601
+ | | sentence1 | sentence2 | score |
602
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
603
+ | type | string | string | float |
604
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
605
+ * Samples:
606
+ | sentence1 | sentence2 | score |
607
+ |:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
608
+ | <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
609
+ | <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
610
+ | <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
611
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
612
+ ```json
613
+ {
614
+ "scale": 20.0,
615
+ "similarity_fct": "pairwise_cos_sim"
616
+ }
617
+ ```
618
+
619
+ ### Training Hyperparameters
620
+ #### Non-Default Hyperparameters
621
+
622
+ - `eval_strategy`: steps
623
+ - `per_device_train_batch_size`: 7
624
+ - `per_device_eval_batch_size`: 7
625
+ - `gradient_accumulation_steps`: 4
626
+ - `learning_rate`: 3e-05
627
+ - `num_train_epochs`: 20
628
+ - `warmup_ratio`: 0.1
629
+
630
+ #### All Hyperparameters
631
+ <details><summary>Click to expand</summary>
632
+
633
+ - `overwrite_output_dir`: False
634
+ - `do_predict`: False
635
+ - `eval_strategy`: steps
636
+ - `prediction_loss_only`: True
637
+ - `per_device_train_batch_size`: 7
638
+ - `per_device_eval_batch_size`: 7
639
+ - `per_gpu_train_batch_size`: None
640
+ - `per_gpu_eval_batch_size`: None
641
+ - `gradient_accumulation_steps`: 4
642
+ - `eval_accumulation_steps`: None
643
+ - `torch_empty_cache_steps`: None
644
+ - `learning_rate`: 3e-05
645
+ - `weight_decay`: 0.0
646
+ - `adam_beta1`: 0.9
647
+ - `adam_beta2`: 0.999
648
+ - `adam_epsilon`: 1e-08
649
+ - `max_grad_norm`: 1.0
650
+ - `num_train_epochs`: 20
651
+ - `max_steps`: -1
652
+ - `lr_scheduler_type`: linear
653
+ - `lr_scheduler_kwargs`: {}
654
+ - `warmup_ratio`: 0.1
655
+ - `warmup_steps`: 0
656
+ - `log_level`: passive
657
+ - `log_level_replica`: warning
658
+ - `log_on_each_node`: True
659
+ - `logging_nan_inf_filter`: True
660
+ - `save_safetensors`: True
661
+ - `save_on_each_node`: False
662
+ - `save_only_model`: False
663
+ - `restore_callback_states_from_checkpoint`: False
664
+ - `no_cuda`: False
665
+ - `use_cpu`: False
666
+ - `use_mps_device`: False
667
+ - `seed`: 42
668
+ - `data_seed`: None
669
+ - `jit_mode_eval`: False
670
+ - `use_ipex`: False
671
+ - `bf16`: False
672
+ - `fp16`: False
673
+ - `fp16_opt_level`: O1
674
+ - `half_precision_backend`: auto
675
+ - `bf16_full_eval`: False
676
+ - `fp16_full_eval`: False
677
+ - `tf32`: None
678
+ - `local_rank`: 0
679
+ - `ddp_backend`: None
680
+ - `tpu_num_cores`: None
681
+ - `tpu_metrics_debug`: False
682
+ - `debug`: []
683
+ - `dataloader_drop_last`: False
684
+ - `dataloader_num_workers`: 0
685
+ - `dataloader_prefetch_factor`: None
686
+ - `past_index`: -1
687
+ - `disable_tqdm`: False
688
+ - `remove_unused_columns`: True
689
+ - `label_names`: None
690
+ - `load_best_model_at_end`: False
691
+ - `ignore_data_skip`: False
692
+ - `fsdp`: []
693
+ - `fsdp_min_num_params`: 0
694
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
695
+ - `fsdp_transformer_layer_cls_to_wrap`: None
696
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
697
+ - `deepspeed`: None
698
+ - `label_smoothing_factor`: 0.0
699
+ - `optim`: adamw_torch
700
+ - `optim_args`: None
701
+ - `adafactor`: False
702
+ - `group_by_length`: False
703
+ - `length_column_name`: length
704
+ - `ddp_find_unused_parameters`: None
705
+ - `ddp_bucket_cap_mb`: None
706
+ - `ddp_broadcast_buffers`: False
707
+ - `dataloader_pin_memory`: True
708
+ - `dataloader_persistent_workers`: False
709
+ - `skip_memory_metrics`: True
710
+ - `use_legacy_prediction_loop`: False
711
+ - `push_to_hub`: False
712
+ - `resume_from_checkpoint`: None
713
+ - `hub_model_id`: None
714
+ - `hub_strategy`: every_save
715
+ - `hub_private_repo`: None
716
+ - `hub_always_push`: False
717
+ - `gradient_checkpointing`: False
718
+ - `gradient_checkpointing_kwargs`: None
719
+ - `include_inputs_for_metrics`: False
720
+ - `include_for_metrics`: []
721
+ - `eval_do_concat_batches`: True
722
+ - `fp16_backend`: auto
723
+ - `push_to_hub_model_id`: None
724
+ - `push_to_hub_organization`: None
725
+ - `mp_parameters`:
726
+ - `auto_find_batch_size`: False
727
+ - `full_determinism`: False
728
+ - `torchdynamo`: None
729
+ - `ray_scope`: last
730
+ - `ddp_timeout`: 1800
731
+ - `torch_compile`: False
732
+ - `torch_compile_backend`: None
733
+ - `torch_compile_mode`: None
734
+ - `dispatch_batches`: None
735
+ - `split_batches`: None
736
+ - `include_tokens_per_second`: False
737
+ - `include_num_input_tokens_seen`: False
738
+ - `neftune_noise_alpha`: None
739
+ - `optim_target_modules`: None
740
+ - `batch_eval_metrics`: False
741
+ - `eval_on_start`: False
742
+ - `use_liger_kernel`: False
743
+ - `eval_use_gather_object`: False
744
+ - `average_tokens_across_devices`: False
745
+ - `prompts`: None
746
+ - `batch_sampler`: batch_sampler
747
+ - `multi_dataset_batch_sampler`: proportional
748
+
749
+ </details>
750
+
751
+ ### Training Logs
752
+ <details><summary>Click to expand</summary>
753
+
754
+ | Epoch | Step | Training Loss | Validation Loss |
755
+ |:-------:|:----:|:-------------:|:---------------:|
756
+ | 9.5153 | 2560 | 6.782 | - |
757
+ | 9.5524 | 2570 | 7.3027 | - |
758
+ | 9.5894 | 2580 | 7.3348 | - |
759
+ | 9.6265 | 2590 | 7.7864 | - |
760
+ | 9.6636 | 2600 | 6.3552 | - |
761
+ | 9.7006 | 2610 | 7.151 | - |
762
+ | 9.7377 | 2620 | 6.1664 | - |
763
+ | 9.7748 | 2630 | 6.0398 | - |
764
+ | 9.8119 | 2640 | 7.0452 | - |
765
+ | 9.8489 | 2650 | 7.2457 | - |
766
+ | 9.8860 | 2660 | 6.7531 | - |
767
+ | 9.9231 | 2670 | 6.7149 | - |
768
+ | 9.9601 | 2680 | 6.4635 | - |
769
+ | 9.9972 | 2690 | 6.2237 | - |
770
+ | 10.0371 | 2700 | 6.1798 | 2.9939 |
771
+ | 10.0741 | 2710 | 7.2224 | - |
772
+ | 10.1112 | 2720 | 6.5327 | - |
773
+ | 10.1483 | 2730 | 7.4686 | - |
774
+ | 10.1854 | 2740 | 6.1404 | - |
775
+ | 10.2224 | 2750 | 7.0005 | - |
776
+ | 10.2595 | 2760 | 5.7726 | - |
777
+ | 10.2966 | 2770 | 6.5327 | - |
778
+ | 10.3336 | 2780 | 7.5015 | - |
779
+ | 10.3707 | 2790 | 6.5526 | - |
780
+ | 10.4078 | 2800 | 6.2078 | - |
781
+ | 10.4449 | 2810 | 6.1 | - |
782
+ | 10.4819 | 2820 | 7.1027 | - |
783
+ | 10.5190 | 2830 | 8.639 | - |
784
+ | 10.5561 | 2840 | 6.9937 | - |
785
+ | 10.5931 | 2850 | 7.2734 | 2.8532 |
786
+ | 10.6302 | 2860 | 7.6321 | - |
787
+ | 10.6673 | 2870 | 7.5788 | - |
788
+ | 10.7044 | 2880 | 6.7864 | - |
789
+ | 10.7414 | 2890 | 7.4237 | - |
790
+ | 10.7785 | 2900 | 6.9813 | - |
791
+ | 10.8156 | 2910 | 6.6884 | - |
792
+ | 10.8526 | 2920 | 6.7464 | - |
793
+ | 10.8897 | 2930 | 7.7989 | - |
794
+ | 10.9268 | 2940 | 7.3568 | - |
795
+ | 10.9639 | 2950 | 8.6706 | - |
796
+ | 11.0 | 2960 | 6.5687 | - |
797
+ | 11.0371 | 2970 | 5.8992 | - |
798
+ | 11.0741 | 2980 | 6.4543 | - |
799
+ | 11.1112 | 2990 | 6.1386 | - |
800
+ | 11.1483 | 3000 | 6.9047 | 2.9147 |
801
+ | 11.1854 | 3010 | 7.405 | - |
802
+ | 11.2224 | 3020 | 7.5441 | - |
803
+ | 11.2595 | 3030 | 6.7524 | - |
804
+ | 11.2966 | 3040 | 7.698 | - |
805
+ | 11.3336 | 3050 | 7.6167 | - |
806
+ | 11.3707 | 3060 | 7.1516 | - |
807
+ | 11.4078 | 3070 | 6.7458 | - |
808
+ | 11.4449 | 3080 | 6.7608 | - |
809
+ | 11.4819 | 3090 | 7.1508 | - |
810
+ | 11.5190 | 3100 | 6.9155 | - |
811
+ | 11.5561 | 3110 | 6.6664 | - |
812
+ | 11.5931 | 3120 | 8.3841 | - |
813
+ | 11.6302 | 3130 | 7.1934 | - |
814
+ | 11.6673 | 3140 | 6.9681 | - |
815
+ | 11.7044 | 3150 | 7.2187 | 2.7509 |
816
+ | 11.7414 | 3160 | 7.3155 | - |
817
+ | 11.7785 | 3170 | 7.3103 | - |
818
+ | 11.8156 | 3180 | 7.1959 | - |
819
+ | 11.8526 | 3190 | 6.8164 | - |
820
+ | 11.8897 | 3200 | 7.5836 | - |
821
+ | 11.9268 | 3210 | 5.2671 | - |
822
+ | 11.9639 | 3220 | 6.4929 | - |
823
+ | 12.0 | 3230 | 7.0892 | - |
824
+ | 12.0371 | 3240 | 7.0877 | - |
825
+ | 12.0741 | 3250 | 5.8302 | - |
826
+ | 12.1112 | 3260 | 5.6145 | - |
827
+ | 12.1483 | 3270 | 6.5808 | - |
828
+ | 12.1854 | 3280 | 6.6826 | - |
829
+ | 12.2224 | 3290 | 5.9819 | - |
830
+ | 12.2595 | 3300 | 6.68 | 3.0175 |
831
+ | 12.2966 | 3310 | 6.1685 | - |
832
+ | 12.3336 | 3320 | 6.4473 | - |
833
+ | 12.3707 | 3330 | 6.3965 | - |
834
+ | 12.4078 | 3340 | 6.6278 | - |
835
+ | 12.4449 | 3350 | 5.4575 | - |
836
+ | 12.4819 | 3360 | 7.3019 | - |
837
+ | 12.5190 | 3370 | 7.4843 | - |
838
+ | 12.5561 | 3380 | 6.709 | - |
839
+ | 12.5931 | 3390 | 6.7168 | - |
840
+ | 12.6302 | 3400 | 7.0223 | - |
841
+ | 12.6673 | 3410 | 6.5089 | - |
842
+ | 12.7044 | 3420 | 6.5094 | - |
843
+ | 12.7414 | 3430 | 7.2317 | - |
844
+ | 12.7785 | 3440 | 6.6885 | - |
845
+ | 12.8156 | 3450 | 6.9693 | 2.8462 |
846
+ | 12.8526 | 3460 | 6.8242 | - |
847
+ | 12.8897 | 3470 | 6.6899 | - |
848
+ | 12.9268 | 3480 | 6.9113 | - |
849
+ | 12.9639 | 3490 | 7.1903 | - |
850
+ | 13.0 | 3500 | 7.3286 | - |
851
+ | 13.0371 | 3510 | 6.5465 | - |
852
+ | 13.0741 | 3520 | 5.6804 | - |
853
+ | 13.1112 | 3530 | 5.6412 | - |
854
+ | 13.1483 | 3540 | 6.6161 | - |
855
+ | 13.1854 | 3550 | 5.761 | - |
856
+ | 13.2224 | 3560 | 5.5669 | - |
857
+ | 13.2595 | 3570 | 5.6184 | - |
858
+ | 13.2966 | 3580 | 6.2996 | - |
859
+ | 13.3336 | 3590 | 4.99 | - |
860
+ | 13.3707 | 3600 | 5.9974 | 3.2358 |
861
+ | 13.4078 | 3610 | 5.6962 | - |
862
+ | 13.4449 | 3620 | 6.3662 | - |
863
+ | 13.4819 | 3630 | 7.0398 | - |
864
+ | 13.5190 | 3640 | 7.7358 | - |
865
+ | 13.5561 | 3650 | 7.9063 | - |
866
+ | 13.5931 | 3660 | 5.7823 | - |
867
+ | 13.6302 | 3670 | 6.9861 | - |
868
+ | 13.6673 | 3680 | 7.2855 | - |
869
+ | 13.7044 | 3690 | 5.6785 | - |
870
+ | 13.7414 | 3700 | 6.4071 | - |
871
+ | 13.7785 | 3710 | 6.4294 | - |
872
+ | 13.8156 | 3720 | 6.0842 | - |
873
+ | 13.8526 | 3730 | 5.9422 | - |
874
+ | 13.8897 | 3740 | 7.0778 | - |
875
+ | 13.9268 | 3750 | 8.1597 | 3.0093 |
876
+ | 13.9639 | 3760 | 6.3154 | - |
877
+ | 14.0 | 3770 | 6.2416 | - |
878
+ | 14.0371 | 3780 | 5.9958 | - |
879
+ | 14.0741 | 3790 | 5.7032 | - |
880
+ | 14.1112 | 3800 | 4.9524 | - |
881
+ | 14.1483 | 3810 | 5.386 | - |
882
+ | 14.1854 | 3820 | 5.6353 | - |
883
+ | 14.2224 | 3830 | 5.0873 | - |
884
+ | 14.2595 | 3840 | 4.9255 | - |
885
+ | 14.2966 | 3850 | 5.1423 | - |
886
+ | 14.3336 | 3860 | 6.0775 | - |
887
+ | 14.3707 | 3870 | 4.5073 | - |
888
+ | 14.4078 | 3880 | 6.8347 | - |
889
+ | 14.4449 | 3890 | 6.5397 | - |
890
+ | 14.4819 | 3900 | 7.2143 | 3.3080 |
891
+ | 14.5190 | 3910 | 6.1123 | - |
892
+ | 14.5561 | 3920 | 6.6048 | - |
893
+ | 14.5931 | 3930 | 6.3464 | - |
894
+ | 14.6302 | 3940 | 6.3618 | - |
895
+ | 14.6673 | 3950 | 6.5718 | - |
896
+ | 14.7044 | 3960 | 5.9785 | - |
897
+ | 14.7414 | 3970 | 6.5758 | - |
898
+ | 14.7785 | 3980 | 6.4308 | - |
899
+ | 14.8156 | 3990 | 6.0208 | - |
900
+ | 14.8526 | 4000 | 6.0303 | - |
901
+ | 14.8897 | 4010 | 6.6396 | - |
902
+ | 14.9268 | 4020 | 6.0184 | - |
903
+ | 14.9639 | 4030 | 6.6248 | - |
904
+ | 15.0 | 4040 | 6.4538 | - |
905
+ | 15.0371 | 4050 | 6.4742 | 3.1761 |
906
+ | 15.0741 | 4060 | 5.5295 | - |
907
+ | 15.1112 | 4070 | 6.8753 | - |
908
+ | 15.1483 | 4080 | 5.639 | - |
909
+ | 15.1854 | 4090 | 5.6232 | - |
910
+ | 15.2224 | 4100 | 6.3026 | - |
911
+ | 15.2595 | 4110 | 6.1182 | - |
912
+ | 15.2966 | 4120 | 5.4736 | - |
913
+ | 15.3336 | 4130 | 6.2961 | - |
914
+ | 15.3707 | 4140 | 5.4742 | - |
915
+ | 15.4078 | 4150 | 5.4707 | - |
916
+ | 15.4449 | 4160 | 4.7272 | - |
917
+ | 15.4819 | 4170 | 6.1026 | - |
918
+ | 15.5190 | 4180 | 5.0468 | - |
919
+ | 15.5561 | 4190 | 5.5796 | - |
920
+ | 15.5931 | 4200 | 6.9046 | 3.1433 |
921
+ | 15.6302 | 4210 | 5.6123 | - |
922
+ | 15.6673 | 4220 | 6.7246 | - |
923
+ | 15.7044 | 4230 | 5.7076 | - |
924
+ | 15.7414 | 4240 | 6.6772 | - |
925
+ | 15.7785 | 4250 | 5.6038 | - |
926
+ | 15.8156 | 4260 | 4.9544 | - |
927
+ | 15.8526 | 4270 | 5.0661 | - |
928
+ | 15.8897 | 4280 | 5.291 | - |
929
+ | 15.9268 | 4290 | 6.6652 | - |
930
+ | 15.9639 | 4300 | 5.6797 | - |
931
+ | 16.0 | 4310 | 5.1129 | - |
932
+ | 16.0371 | 4320 | 5.4445 | - |
933
+ | 16.0741 | 4330 | 4.8946 | - |
934
+ | 16.1112 | 4340 | 6.3929 | - |
935
+ | 16.1483 | 4350 | 6.0633 | 3.1426 |
936
+ | 16.1854 | 4360 | 5.522 | - |
937
+ | 16.2224 | 4370 | 4.7067 | - |
938
+ | 16.2595 | 4380 | 5.4688 | - |
939
+ | 16.2966 | 4390 | 5.6009 | - |
940
+ | 16.3336 | 4400 | 5.1376 | - |
941
+ | 16.3707 | 4410 | 4.5196 | - |
942
+ | 16.4078 | 4420 | 5.5109 | - |
943
+ | 16.4449 | 4430 | 5.1888 | - |
944
+ | 16.4819 | 4440 | 6.0305 | - |
945
+ | 16.5190 | 4450 | 5.2791 | - |
946
+ | 16.5561 | 4460 | 5.4005 | - |
947
+ | 16.5931 | 4470 | 5.255 | - |
948
+ | 16.6302 | 4480 | 6.2026 | - |
949
+ | 16.6673 | 4490 | 6.6388 | - |
950
+ | 16.7044 | 4500 | 5.6138 | 3.2812 |
951
+ | 16.7414 | 4510 | 4.7913 | - |
952
+ | 16.7785 | 4520 | 5.6675 | - |
953
+ | 16.8156 | 4530 | 5.8975 | - |
954
+ | 16.8526 | 4540 | 5.4597 | - |
955
+ | 16.8897 | 4550 | 5.137 | - |
956
+ | 16.9268 | 4560 | 4.5395 | - |
957
+ | 16.9639 | 4570 | 4.6304 | - |
958
+ | 17.0 | 4580 | 5.8098 | - |
959
+ | 17.0371 | 4590 | 4.0267 | - |
960
+ | 17.0741 | 4600 | 4.9194 | - |
961
+ | 17.1112 | 4610 | 4.1852 | - |
962
+ | 17.1483 | 4620 | 5.129 | - |
963
+ | 17.1854 | 4630 | 4.469 | - |
964
+ | 17.2224 | 4640 | 5.4298 | - |
965
+ | 17.2595 | 4650 | 4.5234 | 3.3447 |
966
+ | 17.2966 | 4660 | 4.6856 | - |
967
+ | 17.3336 | 4670 | 6.3431 | - |
968
+ | 17.3707 | 4680 | 5.347 | - |
969
+ | 17.4078 | 4690 | 4.9223 | - |
970
+ | 17.4449 | 4700 | 5.4404 | - |
971
+ | 17.4819 | 4710 | 4.916 | - |
972
+ | 17.5190 | 4720 | 6.1744 | - |
973
+ | 17.5561 | 4730 | 4.8039 | - |
974
+ | 17.5931 | 4740 | 5.2276 | - |
975
+ | 17.6302 | 4750 | 4.4189 | - |
976
+ | 17.6673 | 4760 | 4.1434 | - |
977
+ | 17.7044 | 4770 | 4.9443 | - |
978
+ | 17.7414 | 4780 | 5.6975 | - |
979
+ | 17.7785 | 4790 | 4.6667 | - |
980
+ | 17.8156 | 4800 | 4.9876 | 3.2924 |
981
+ | 17.8526 | 4810 | 4.4342 | - |
982
+ | 17.8897 | 4820 | 5.2595 | - |
983
+ | 17.9268 | 4830 | 5.6566 | - |
984
+ | 17.9639 | 4840 | 5.5452 | - |
985
+ | 18.0 | 4850 | 4.4986 | - |
986
+ | 18.0371 | 4860 | 4.8155 | - |
987
+ | 18.0741 | 4870 | 4.2278 | - |
988
+ | 18.1112 | 4880 | 5.4733 | - |
989
+ | 18.1483 | 4890 | 4.2394 | - |
990
+ | 18.1854 | 4900 | 5.1253 | - |
991
+ | 18.2224 | 4910 | 4.7498 | - |
992
+ | 18.2595 | 4920 | 4.9775 | - |
993
+ | 18.2966 | 4930 | 4.797 | - |
994
+ | 18.3336 | 4940 | 4.5694 | - |
995
+ | 18.3707 | 4950 | 4.6192 | 3.6615 |
996
+ | 18.4078 | 4960 | 5.8114 | - |
997
+ | 18.4449 | 4970 | 4.8035 | - |
998
+ | 18.4819 | 4980 | 4.6944 | - |
999
+ | 18.5190 | 4990 | 4.8664 | - |
1000
+ | 18.5561 | 5000 | 4.6916 | - |
1001
+ | 18.5931 | 5010 | 4.3352 | - |
1002
+ | 18.6302 | 5020 | 5.9779 | - |
1003
+ | 18.6673 | 5030 | 4.7813 | - |
1004
+ | 18.7044 | 5040 | 4.632 | - |
1005
+ | 18.7414 | 5050 | 4.7411 | - |
1006
+ | 18.7785 | 5060 | 3.6489 | - |
1007
+ | 18.8156 | 5070 | 4.5373 | - |
1008
+ | 18.8526 | 5080 | 5.6129 | - |
1009
+ | 18.8897 | 5090 | 4.8933 | - |
1010
+ | 18.9268 | 5100 | 4.27 | 3.6957 |
1011
+ | 18.9639 | 5110 | 4.5338 | - |
1012
+ | 19.0 | 5120 | 5.5175 | - |
1013
+ | 19.0371 | 5130 | 5.0835 | - |
1014
+ | 19.0741 | 5140 | 4.6826 | - |
1015
+ | 19.1112 | 5150 | 4.5391 | - |
1016
+ | 19.1483 | 5160 | 5.3723 | - |
1017
+ | 19.1854 | 5170 | 4.8095 | - |
1018
+ | 19.2224 | 5180 | 4.7402 | - |
1019
+ | 19.2595 | 5190 | 4.0488 | - |
1020
+ | 19.2966 | 5200 | 3.6424 | - |
1021
+ | 19.3336 | 5210 | 4.2256 | - |
1022
+ | 19.3707 | 5220 | 4.4607 | - |
1023
+ | 19.4078 | 5230 | 3.5702 | - |
1024
+ | 19.4449 | 5240 | 4.3062 | - |
1025
+ | 19.4819 | 5250 | 4.2919 | 3.6594 |
1026
+ | 19.5190 | 5260 | 4.6985 | - |
1027
+ | 19.5561 | 5270 | 4.6907 | - |
1028
+ | 19.5931 | 5280 | 4.3865 | - |
1029
+ | 19.6302 | 5290 | 3.9818 | - |
1030
+ | 19.6673 | 5300 | 4.3166 | - |
1031
+ | 19.7044 | 5310 | 4.9131 | - |
1032
+ | 19.7414 | 5320 | 4.7641 | - |
1033
+ | 19.7785 | 5330 | 5.419 | - |
1034
+ | 19.8156 | 5340 | 4.068 | - |
1035
+ | 19.8526 | 5350 | 4.1094 | - |
1036
+ | 19.8897 | 5360 | 5.2279 | - |
1037
+ | 19.9268 | 5370 | 4.4818 | - |
1038
+ | 19.9639 | 5380 | 4.3103 | - |
1039
+
1040
+ </details>
1041
+
1042
+ ### Framework Versions
1043
+ - Python: 3.11.0
1044
+ - Sentence Transformers: 3.4.0
1045
+ - Transformers: 4.48.1
1046
+ - PyTorch: 2.5.1+cu124
1047
+ - Accelerate: 1.3.0
1048
+ - Datasets: 3.2.0
1049
+ - Tokenizers: 0.21.0
1050
+
1051
+ ## Citation
1052
+
1053
+ ### BibTeX
1054
+
1055
+ #### Sentence Transformers
1056
+ ```bibtex
1057
+ @inproceedings{reimers-2019-sentence-bert,
1058
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1059
+ author = "Reimers, Nils and Gurevych, Iryna",
1060
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1061
+ month = "11",
1062
+ year = "2019",
1063
+ publisher = "Association for Computational Linguistics",
1064
+ url = "https://arxiv.org/abs/1908.10084",
1065
+ }
1066
+ ```
1067
+
1068
+ #### CoSENTLoss
1069
+ ```bibtex
1070
+ @online{kexuefm-8847,
1071
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1072
+ author={Su Jianlin},
1073
+ year={2022},
1074
+ month={Jan},
1075
+ url={https://kexue.fm/archives/8847},
1076
+ }
1077
+ ```
1078
+
1079
+ <!--
1080
+ ## Glossary
1081
+
1082
+ *Clearly define terms in order to be accessible across audiences.*
1083
+ -->
1084
+
1085
+ <!--
1086
+ ## Model Card Authors
1087
+
1088
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1089
+ -->
1090
+
1091
+ <!--
1092
+ ## Model Card Contact
1093
+
1094
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1095
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aca6f2662c641a9490874428fd31456882c4bb2907af32f94152fb87b7038c1
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }