Update README.md
Browse files
README.md
CHANGED
@@ -144,13 +144,34 @@ Users (both direct and downstream) should be aware of the following recommendati
|
|
144 |
Use the code below to get started with the model:
|
145 |
|
146 |
```python
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
```
|
155 |
|
156 |
## Training Details
|
|
|
144 |
Use the code below to get started with the model:
|
145 |
|
146 |
```python
|
147 |
+
import pickle
|
148 |
+
import re
|
149 |
+
import numpy as np
|
150 |
+
import tensorflow as tf
|
151 |
+
|
152 |
+
model = tf.keras.models.load_model("path/to/model.h5")
|
153 |
+
with open("path/to/vectorizer.pkl", "rb") as vec_file:
|
154 |
+
vectorizer = pickle.load(vec_file)
|
155 |
+
|
156 |
+
def clean_text(text):
|
157 |
+
return re.sub(r"[^\w\s]", "", text).lower()
|
158 |
+
|
159 |
+
def classify_text(text, threshold=0.5):
|
160 |
+
text = clean_text(text)
|
161 |
+
words = text.split()
|
162 |
+
X = vectorizer.transform(words).toarray()
|
163 |
+
predictions = model.predict(X)
|
164 |
+
result = {}
|
165 |
+
for word, pred in zip(words, predictions):
|
166 |
+
result[word] = {"probability": round(float(pred), 3), "classification": "Dirty word" if pred >= threshold else "Normal"}
|
167 |
+
return result
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
text = "text example here"
|
171 |
+
result = classify_text(text)
|
172 |
+
print("Classification result:")
|
173 |
+
for word, data in result.items():
|
174 |
+
print(f"{word}: {data['probability']} ({data['classification']})")
|
175 |
```
|
176 |
|
177 |
## Training Details
|