Update README.md
Browse files
README.md
CHANGED
@@ -6,197 +6,86 @@ library_name: peft
|
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.12.0
|
|
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
base_model: Qwen/Qwen2.5-7B-Instruct
|
10 |
+
library_name: peft
|
11 |
|
12 |
+
It should be noted that the TIPA, and training data for this model are all from Chinese, and support for other languages may not be sufficient. If you need to train a model specific to a particular language or for a general purpose, please refer to our paper and GitHub
|
13 |
+
|
14 |
+
This model is trained on the TIPA dataset, and its function is to directly output all corrected new text, in the same way as the original downstream task. If you want to view the MTIPA (Model of Output Position), please refer to the following website:
|
15 |
+
[MTIPA](https://huggingface.co/LLMMINE/MTIPA-7B-PositionTask)
|
16 |
+
|
17 |
+
|
18 |
+
```python
|
19 |
+
from peft import PeftModel
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
+
|
22 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
24 |
+
trust_remote_code=True,
|
25 |
+
torch_dtype="auto",
|
26 |
+
device_map="auto")
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
|
28 |
+
|
29 |
+
model = PeftModel.from_pretrained(base_model, "LLMMINE/TIPA-7B-TranditionalTask")
|
30 |
+
def chat(text):
|
31 |
+
system = (
|
32 |
+
"纠正输入这段话中的错别字,直接给出纠正后的文本,无需任何解释\n"
|
33 |
+
)
|
34 |
+
messages = [
|
35 |
+
{"role": "system", "content": system},
|
36 |
+
{"role": "user", "content": text}
|
37 |
+
]
|
38 |
+
text_input = tokenizer.apply_chat_template(
|
39 |
+
messages,
|
40 |
+
tokenize=False,
|
41 |
+
add_generation_prompt=True
|
42 |
+
)
|
43 |
+
|
44 |
+
# print("Input to model:")
|
45 |
+
# print(text_input)
|
46 |
+
model_inputs = tokenizer([text_input], return_tensors="pt").to(model.device)
|
47 |
+
|
48 |
+
generated_ids = model.generate(
|
49 |
+
**model_inputs,
|
50 |
+
max_new_tokens=512,
|
51 |
+
temperature=0.01,
|
52 |
+
)
|
53 |
+
generated_ids = [
|
54 |
+
output_ids[len(input_ids):]
|
55 |
+
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
56 |
+
]
|
57 |
+
|
58 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
59 |
+
# print("Model response:")
|
60 |
+
# print(response)
|
61 |
+
return response
|
62 |
+
|
63 |
+
def main():
|
64 |
+
print("命令行聊天程序已启动。输入您的文本,或输入 'exit' 退出。")
|
65 |
+
while True:
|
66 |
+
user_input = input("您: ")
|
67 |
+
if user_input.lower() in ['exit', 'quit']:
|
68 |
+
print("程序已退出。")
|
69 |
+
break
|
70 |
+
if not user_input.strip():
|
71 |
+
print("请输入文本。")
|
72 |
+
continue
|
73 |
+
response = chat(user_input)
|
74 |
+
print("回复:", response)
|
75 |
+
|
76 |
+
if __name__ == '__main__':
|
77 |
+
main()
|
78 |
+
```
|
79 |
+
|
80 |
+
Input:
|
81 |
+
```
|
82 |
+
花雨在镇上落了一整夜,这静寂的风暴覆盖了屋顶,堵住了房门,令露宿的动物窒息而死。如此多的花朵自天而降,天亮时大界小巷都覆上了一层绵密的花毯,人们得用铲子耙子清理出通道才能出殡。
|
83 |
+
```
|
84 |
+
Taken from One Hundred Years of Solitude (Cien Años de Soledad) And let `街` -> `界`
|
85 |
+
|
86 |
+
Output:
|
87 |
+
```
|
88 |
+
花雨在镇上落了一整夜,这静寂的风暴覆盖了屋顶,堵住了房门,令露宿的动物窒息而死。如此多的花朵自天而降,天亮时大街小巷都覆上了一层绵密的花毯,人们得用铲子耙子清理出通道才能出殡。
|
89 |
+
```
|
90 |
+
|
91 |
+
[**Github**](https://github.com/FloatFrank/TIPA) | [**Paper**](https://arxiv.org/abs/2411.17679)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|