Update README.md
Browse filesQuantization updated
README.md
CHANGED
@@ -1,3 +1,94 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- open-r1/codeforces-cots
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- Qwen/Qwen2.5-Coder-7B-Instruct
|
9 |
+
- open-r1/OlympicCoder-7B
|
10 |
+
base_model_relation: quantized
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
library_name: transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
|
16 |
+
## Exllama v2 Quantizations of OlympicCoder-7B
|
17 |
+
|
18 |
+
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.2.8">turboderp's ExLlamaV2 v0.2.8</a> for quantization.
|
19 |
+
|
20 |
+
average:4.5bpw
|
21 |
+
lm_head:6.0bpw
|
22 |
+
```sh
|
23 |
+
python convert.py \
|
24 |
+
-i {path}/OlympicCoder-7B \
|
25 |
+
-o {path}/OlympicCoder-7B/workingdir/ \
|
26 |
+
-cf {path}/OlympicCoder-7B_4.5bpw/ \
|
27 |
+
-b 4.5 \
|
28 |
+
-hb 6
|
29 |
+
```
|
30 |
+
|
31 |
+
# Model Card for OlympicCoder-7B
|
32 |
+
|
33 |
+
OlympicCoder-7B is a code model that achieves strong performance on competitive coding benchmarks such as LiveCodeBench and the 2024 International Olympiad in Informatics.
|
34 |
+
|
35 |
+
* Repository: https://github.com/huggingface/open-r1
|
36 |
+
* Blog post: https://huggingface.co/blog/open-r1/update-3
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
- **Model type:** A 7B parameter model fine-tuned on a decontaminated version of the codeforces dataset.
|
41 |
+
- **Language(s) (NLP):** Primarily English
|
42 |
+
- **License:** apache-2.0
|
43 |
+
- **Finetuned from model:** [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct)
|
44 |
+
|
45 |
+
## Evaluation
|
46 |
+
|
47 |
+

|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
## Usage
|
52 |
+
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
|
53 |
+
|
54 |
+
```python
|
55 |
+
# pip install transformers
|
56 |
+
# pip install accelerate
|
57 |
+
import torch
|
58 |
+
from transformers import pipeline
|
59 |
+
pipe = pipeline("text-generation", model="open-r1/OlympicCoder-7B", torch_dtype=torch.bfloat16, device_map="auto")
|
60 |
+
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
61 |
+
messages = [
|
62 |
+
{"role": "user", "content": "Write a python program to calculate the 10th Fibonacci number"},
|
63 |
+
]
|
64 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
65 |
+
outputs = pipe(prompt, max_new_tokens=8000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
66 |
+
print(outputs[0]["generated_text"])
|
67 |
+
#<|im_start|>user
|
68 |
+
#Write a python program to calculate the 10th fibonacci number<|im_end|>
|
69 |
+
#<|im_start|>assistant
|
70 |
+
#<think>Okay, I need to write a Python program that calculates the 10th Fibonacci number. Hmm, the Fibonacci sequence starts with 0 and 1. Each subsequent number is the sum of the two preceding ones. So the sequence goes: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and so on. ...
|
71 |
+
```
|
72 |
+
|
73 |
+
> [!WARNING]
|
74 |
+
> To ensure that the model consistently outputs a long chain-of-thought, we have edited the chat template to prefill the first assistant turn with a `<think>` token. As a result, the outputs from this model will not show the opening `<think>` token if you use the model's `generate()` method. To apply reinforcement learning with a format reward, either prepend the `<think>` token to the model's completions or amend the chat template to remove the prefill.
|
75 |
+
|
76 |
+
## Training procedure
|
77 |
+
### Training hyper-parameters
|
78 |
+
|
79 |
+
The following hyperparameters were used during training:
|
80 |
+
|
81 |
+
- dataset: open-r1/codeforces-cots
|
82 |
+
- learning_rate: 4.0e-5
|
83 |
+
- train_batch_size: 2
|
84 |
+
- seed: 42
|
85 |
+
- packing: false
|
86 |
+
- distributed_type: deepspeed-zero-3
|
87 |
+
- num_devices: 8
|
88 |
+
- gradient_accumulation_steps: 8
|
89 |
+
- total_train_batch_size: 16
|
90 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
91 |
+
- lr_scheduler_type: cosine_with_min_lr
|
92 |
+
- min_lr_rate: 0.1
|
93 |
+
- lr_scheduler_warmup_ratio: 0.03
|
94 |
+
- num_epochs: 10.0
|