Commit
·
e875200
1
Parent(s):
ff221ca
Upload folder using huggingface_hub
Browse filesCommitting checkpoint CrystalCoder_phase3_checkpoint_027728
- config.json +33 -0
- configuration_crystalcoder.py +149 -0
- generation_config.json +6 -0
- modeling_crystalcoder.py +1671 -0
- pytorch_model-00001-of-00004.bin +3 -0
- pytorch_model-00002-of-00004.bin +3 -0
- pytorch_model-00003-of-00004.bin +3 -0
- pytorch_model-00004-of-00004.bin +3 -0
- pytorch_model.bin.index.json +523 -0
- register_crystalcoder.py +9 -0
- tokenization_crystalcoder_fast.py +139 -0
- tokenizer.json +0 -0
- tokenizer_config.json +245 -0
config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn_pdrop": 0.0,
|
| 3 |
+
"scale_attn_weights": true,
|
| 4 |
+
"resid_pdrop": 0.0,
|
| 5 |
+
"mup_embeddings_scale": 14.6,
|
| 6 |
+
"n_inner": 10922,
|
| 7 |
+
"n_embd": 4096,
|
| 8 |
+
"layer_norm_epsilon": 1e-05,
|
| 9 |
+
"n_positions": 2048,
|
| 10 |
+
"activation_function": "swiglu",
|
| 11 |
+
"n_head": 32,
|
| 12 |
+
"n_layer": 32,
|
| 13 |
+
"mup_output_alpha": 2.22,
|
| 14 |
+
"mup_width_scale": 0.0625,
|
| 15 |
+
"position_embedding_type": "rotary",
|
| 16 |
+
"rotary_dim": 32,
|
| 17 |
+
"mup_scale_qk_dot_by_d": true,
|
| 18 |
+
"tie_word_embeddings": true,
|
| 19 |
+
"vocab_size": 32032,
|
| 20 |
+
"embd_pdrop": 0.0,
|
| 21 |
+
"model_type": "crystalcoder",
|
| 22 |
+
"use_cache": true,
|
| 23 |
+
"bos_token_id": 1,
|
| 24 |
+
"eos_token_id": 2,
|
| 25 |
+
"auto_map": {
|
| 26 |
+
"AutoConfig": "configuration_crystalcoder.CrystalCoderConfig",
|
| 27 |
+
"AutoModel": "modeling_crystalcoder.CrystalCoderModel",
|
| 28 |
+
"AutoModelForCausalLM": "modeling_crystalcoder.CrystalCoderLMHeadModel"
|
| 29 |
+
},
|
| 30 |
+
"architectures": [
|
| 31 |
+
"CrystalCoderLMHeadModel"
|
| 32 |
+
]
|
| 33 |
+
}
|
configuration_crystalcoder.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" CrystalCoder configuration"""
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class CrystalCoderConfig(PretrainedConfig):
|
| 11 |
+
"""
|
| 12 |
+
This is the configuration class to store the configuration of a [`CrystalCoderModel`]. It is used to instantiate a CrystalCoder
|
| 13 |
+
model according to the specified arguments, defining the model architecture.
|
| 14 |
+
|
| 15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 16 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
| 21 |
+
Vocabulary size of the CrystalCoder model. Defines the number of different tokens that can be represented by the
|
| 22 |
+
`inputs_ids` passed when calling [`CrystalCoderModel`].
|
| 23 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
| 24 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 25 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 26 |
+
n_embd (`int`, *optional*, defaults to 768):
|
| 27 |
+
Dimensionality of the embeddings and hidden states.
|
| 28 |
+
n_layer (`int`, *optional*, defaults to 12):
|
| 29 |
+
Number of hidden layers in the Transformer encoder.
|
| 30 |
+
n_head (`int`, *optional*, defaults to 12):
|
| 31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 32 |
+
n_inner (`int`, *optional*, defaults to None):
|
| 33 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
| 34 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
| 35 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
|
| 36 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
| 37 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 38 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
| 39 |
+
The dropout ratio for the embeddings.
|
| 40 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
| 41 |
+
The dropout ratio for the attention.
|
| 42 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
| 43 |
+
The epsilon to use in the layer normalization layers.
|
| 44 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 45 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 46 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
| 47 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
| 48 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 49 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
| 50 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
| 51 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
| 52 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
| 53 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
| 54 |
+
dot-product/softmax to float() when training with mixed precision.
|
| 55 |
+
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
| 56 |
+
Positional embedding can be either `"alibi"`, `"learned"`, or `"learned"`.
|
| 57 |
+
rotary_dim (`int`, *optional*, defaults to `n_embd / n_head`):
|
| 58 |
+
The dimension along which to apply rope.
|
| 59 |
+
mup_width_scale (`float`, *optional*, defaults to 1.0):
|
| 60 |
+
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
|
| 61 |
+
`d_model` is the model's width and `d_model,0` is the proxy model's width.
|
| 62 |
+
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
|
| 63 |
+
muP parameter to scale token and position embeddings.
|
| 64 |
+
mup_output_alpha (`float`, *optional*, defaults to 1.0):
|
| 65 |
+
muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
|
| 66 |
+
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
| 67 |
+
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
| 68 |
+
scale_attn_weights to `True` as well.
|
| 69 |
+
|
| 70 |
+
Example:
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
>>> from transformers import CrystalCoderConfig, CrystalCoderModel
|
| 74 |
+
|
| 75 |
+
>>> # Initializing a CrystalCoder configuration
|
| 76 |
+
>>> configuration = CrystalCoderConfig()
|
| 77 |
+
|
| 78 |
+
>>> # Initializing a model (with random weights) from the configuration
|
| 79 |
+
>>> model = CrystalCoderModel(configuration)
|
| 80 |
+
|
| 81 |
+
>>> # Accessing the model configuration
|
| 82 |
+
>>> configuration = model.config
|
| 83 |
+
```"""
|
| 84 |
+
|
| 85 |
+
model_type = "crystalcoder"
|
| 86 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 87 |
+
attribute_map = {
|
| 88 |
+
"hidden_size": "n_embd",
|
| 89 |
+
"max_position_embeddings": "n_positions",
|
| 90 |
+
"num_attention_heads": "n_head",
|
| 91 |
+
"num_hidden_layers": "n_layer",
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
vocab_size=32032,
|
| 97 |
+
n_positions=2048,
|
| 98 |
+
n_embd=4096,
|
| 99 |
+
n_layer=32,
|
| 100 |
+
n_head=32,
|
| 101 |
+
n_inner=None,
|
| 102 |
+
activation_function="swiglu",
|
| 103 |
+
resid_pdrop=0.1,
|
| 104 |
+
embd_pdrop=0.1,
|
| 105 |
+
attn_pdrop=0.1,
|
| 106 |
+
layer_norm_epsilon=1e-5,
|
| 107 |
+
initializer_range=0.02,
|
| 108 |
+
scale_attn_weights=True,
|
| 109 |
+
use_cache=True,
|
| 110 |
+
bos_token_id=1,
|
| 111 |
+
eos_token_id=2,
|
| 112 |
+
scale_attn_by_inverse_layer_idx=False,
|
| 113 |
+
reorder_and_upcast_attn=False,
|
| 114 |
+
position_embedding_type="rotary",
|
| 115 |
+
rotary_dim=None,
|
| 116 |
+
mup_width_scale=1.0,
|
| 117 |
+
mup_embeddings_scale=1.0,
|
| 118 |
+
mup_output_alpha=1.0,
|
| 119 |
+
mup_scale_qk_dot_by_d=False,
|
| 120 |
+
**kwargs,
|
| 121 |
+
):
|
| 122 |
+
self.vocab_size = vocab_size
|
| 123 |
+
self.n_positions = n_positions
|
| 124 |
+
self.n_embd = n_embd
|
| 125 |
+
self.n_layer = n_layer
|
| 126 |
+
self.n_head = n_head
|
| 127 |
+
self.n_inner = n_inner
|
| 128 |
+
self.activation_function = activation_function
|
| 129 |
+
self.resid_pdrop = resid_pdrop
|
| 130 |
+
self.embd_pdrop = embd_pdrop
|
| 131 |
+
self.attn_pdrop = attn_pdrop
|
| 132 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 133 |
+
self.initializer_range = initializer_range
|
| 134 |
+
self.scale_attn_weights = scale_attn_weights
|
| 135 |
+
self.use_cache = use_cache
|
| 136 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
| 137 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
| 138 |
+
|
| 139 |
+
self.bos_token_id = bos_token_id
|
| 140 |
+
self.eos_token_id = eos_token_id
|
| 141 |
+
|
| 142 |
+
self.position_embedding_type = position_embedding_type
|
| 143 |
+
self.rotary_dim = rotary_dim
|
| 144 |
+
self.mup_width_scale = mup_width_scale
|
| 145 |
+
self.mup_embeddings_scale = mup_embeddings_scale
|
| 146 |
+
self.mup_output_alpha = mup_output_alpha
|
| 147 |
+
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
| 148 |
+
|
| 149 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.33.0.dev0"
|
| 6 |
+
}
|
modeling_crystalcoder.py
ADDED
|
@@ -0,0 +1,1671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
""" PyTorch CrystalCoder model."""
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torch import Tensor, nn
|
| 11 |
+
from torch.cuda.amp import autocast
|
| 12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 13 |
+
|
| 14 |
+
from transformers.activations import ACT2FN
|
| 15 |
+
from transformers.modeling_outputs import (
|
| 16 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 17 |
+
CausalLMOutputWithCrossAttentions,
|
| 18 |
+
QuestionAnsweringModelOutput,
|
| 19 |
+
SequenceClassifierOutputWithPast,
|
| 20 |
+
TokenClassifierOutput,
|
| 21 |
+
)
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
| 24 |
+
from transformers.utils import (
|
| 25 |
+
add_code_sample_docstrings,
|
| 26 |
+
add_start_docstrings,
|
| 27 |
+
add_start_docstrings_to_model_forward,
|
| 28 |
+
logging,
|
| 29 |
+
)
|
| 30 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 31 |
+
from .configuration_crystalcoder import CrystalCoderConfig
|
| 32 |
+
# from configuration_crystalcoder import CrystalCoderConfig
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
logger = logging.get_logger(__name__)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
_CONFIG_FOR_DOC = "CrystalCoderConfig"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def _duplicate_interleave(m):
|
| 42 |
+
"""
|
| 43 |
+
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
|
| 44 |
+
"""
|
| 45 |
+
dim0 = m.shape[0]
|
| 46 |
+
m = m.view(-1, 1) # flatten the matrix
|
| 47 |
+
m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
|
| 48 |
+
m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
|
| 49 |
+
return m
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class RotaryPositionEmbeddingHelper:
|
| 53 |
+
def __init__(self, max_position_embeddings, rotary_dim, base=10000):
|
| 54 |
+
super(RotaryPositionEmbeddingHelper, self).__init__()
|
| 55 |
+
self.max_position_embeddings = max_position_embeddings
|
| 56 |
+
self.rotary_dim = rotary_dim
|
| 57 |
+
self.base = base
|
| 58 |
+
self.sin_cached = None
|
| 59 |
+
self.cos_cached = None
|
| 60 |
+
# self.offset = 0
|
| 61 |
+
|
| 62 |
+
def create_fixed_pos_emb(self, x, offset):
|
| 63 |
+
if (self.sin_cached is not None and self.cos_cached is not None
|
| 64 |
+
and x.device == self.sin_cached.device
|
| 65 |
+
and x.device == self.cos_cached.device
|
| 66 |
+
):
|
| 67 |
+
sin, cos = self.sin_cached, self.cos_cached
|
| 68 |
+
else:
|
| 69 |
+
# compute sin and cos for the fixed positional embeddings, using the maximum possible sequence length
|
| 70 |
+
# store as cache for future use
|
| 71 |
+
# self.offset = offset
|
| 72 |
+
device = x.device
|
| 73 |
+
|
| 74 |
+
inv_freq = 1.0 / (
|
| 75 |
+
self.base
|
| 76 |
+
** (
|
| 77 |
+
torch.arange(0, self.rotary_dim, 2, device=device)
|
| 78 |
+
/ self.rotary_dim
|
| 79 |
+
)
|
| 80 |
+
)
|
| 81 |
+
sinusoid_inp = torch.einsum(
|
| 82 |
+
"i , j -> i j",
|
| 83 |
+
torch.arange(self.max_position_embeddings, device=device),
|
| 84 |
+
inv_freq,
|
| 85 |
+
)
|
| 86 |
+
sin, cos = (
|
| 87 |
+
torch.sin(sinusoid_inp).to(x.dtype),
|
| 88 |
+
torch.cos(sinusoid_inp).to(x.dtype),
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
sin, cos = map(_duplicate_interleave, (sin, cos))
|
| 92 |
+
|
| 93 |
+
self.sin_cached = sin
|
| 94 |
+
self.cos_cached = cos
|
| 95 |
+
|
| 96 |
+
assert (
|
| 97 |
+
self.max_position_embeddings >= x.shape[1] + offset
|
| 98 |
+
), "RoPE requires max position embeddings ({}) >= sequence length ({}) + offset ({})".format(
|
| 99 |
+
self.max_position_embeddings, x.shape[1], offset,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def slice_at_offset(t):
|
| 103 |
+
return t[None, offset : x.shape[1] + offset, None, :]
|
| 104 |
+
|
| 105 |
+
sin, cos = map(slice_at_offset, (sin, cos))
|
| 106 |
+
|
| 107 |
+
return sin, cos
|
| 108 |
+
|
| 109 |
+
def _apply_rotary_pos_emb(self, x, offset=0):
|
| 110 |
+
def rotate_every_two(x):
|
| 111 |
+
x1 = x[:, :, :, ::2]
|
| 112 |
+
x2 = x[:, :, :, 1::2]
|
| 113 |
+
x = torch.stack((-x2, x1), dim=-1)
|
| 114 |
+
# in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
| 115 |
+
return x.flatten(-2)
|
| 116 |
+
|
| 117 |
+
sin, cos = self.create_fixed_pos_emb(x, offset)
|
| 118 |
+
l = x.size(1)
|
| 119 |
+
sin = sin[:, :l]
|
| 120 |
+
cos = cos[:, :l]
|
| 121 |
+
|
| 122 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
| 123 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
| 124 |
+
|
| 125 |
+
def rotate_tensor(self, x, offset=0):
|
| 126 |
+
assert (
|
| 127 |
+
len(x.shape) == 4
|
| 128 |
+
), "Tensor should be of shape [batch_size, seq_length, num_heads, head_dim] !"
|
| 129 |
+
x_rotary = x[:, :, :, : self.rotary_dim]
|
| 130 |
+
x_pass = x[:, :, :, self.rotary_dim :]
|
| 131 |
+
x_rotated = self._apply_rotary_pos_emb(
|
| 132 |
+
x_rotary, offset=offset
|
| 133 |
+
)
|
| 134 |
+
x = torch.cat([x_rotated, x_pass], dim=-1)
|
| 135 |
+
return x
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class SwiGLUActivation(nn.Module):
|
| 139 |
+
def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
|
| 140 |
+
return x1 * nn.functional.silu(x2)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class AlibiPositionEmbeddingLayer(nn.Module):
|
| 144 |
+
def __init__(self, num_heads):
|
| 145 |
+
super(AlibiPositionEmbeddingLayer, self).__init__()
|
| 146 |
+
|
| 147 |
+
self.num_heads = num_heads
|
| 148 |
+
slopes = torch.tensor(AlibiPositionEmbeddingLayer._get_alibi_slopes(num_heads)).unsqueeze(-1)
|
| 149 |
+
self.slopes = nn.parameter.Parameter(slopes, requires_grad=False)
|
| 150 |
+
|
| 151 |
+
def forward(
|
| 152 |
+
self,
|
| 153 |
+
seq_length,
|
| 154 |
+
key_length,
|
| 155 |
+
cached_qk_len,
|
| 156 |
+
):
|
| 157 |
+
context_position = torch.arange(
|
| 158 |
+
cached_qk_len, cached_qk_len + seq_length, device=self.slopes.device
|
| 159 |
+
)[:, None]
|
| 160 |
+
memory_position = torch.arange(
|
| 161 |
+
key_length + cached_qk_len, device=self.slopes.device
|
| 162 |
+
)[None, :]
|
| 163 |
+
relative_position = memory_position - context_position
|
| 164 |
+
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.num_heads, -1, -1)
|
| 165 |
+
alibi = (self.slopes * -1.0).unsqueeze(1) * relative_position
|
| 166 |
+
return alibi
|
| 167 |
+
|
| 168 |
+
@staticmethod
|
| 169 |
+
def _get_alibi_slopes(n):
|
| 170 |
+
def get_slopes_power_of_2(n):
|
| 171 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
| 172 |
+
ratio = start
|
| 173 |
+
return [start * ratio**i for i in range(n)]
|
| 174 |
+
|
| 175 |
+
if math.log2(n).is_integer():
|
| 176 |
+
return get_slopes_power_of_2(
|
| 177 |
+
n
|
| 178 |
+
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
| 179 |
+
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
| 180 |
+
closest_power_of_2 = 2 ** math.floor(
|
| 181 |
+
math.log2(n)
|
| 182 |
+
) # when the number of heads is not a power of 2, we use this workaround.
|
| 183 |
+
return (
|
| 184 |
+
get_slopes_power_of_2(closest_power_of_2)
|
| 185 |
+
+ AlibiPositionEmbeddingLayer._get_alibi_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def load_tf_weights_in_crystalcoder(model, config, crystalcoder_checkpoint_path):
|
| 190 |
+
"""Load tf checkpoints in a pytorch model"""
|
| 191 |
+
try:
|
| 192 |
+
import re
|
| 193 |
+
|
| 194 |
+
import tensorflow as tf
|
| 195 |
+
except ImportError:
|
| 196 |
+
logger.error(
|
| 197 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 198 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 199 |
+
)
|
| 200 |
+
raise
|
| 201 |
+
tf_path = os.path.abspath(crystalcoder_checkpoint_path)
|
| 202 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
| 203 |
+
# Load weights from TF model
|
| 204 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 205 |
+
names = []
|
| 206 |
+
arrays = []
|
| 207 |
+
for name, shape in init_vars:
|
| 208 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
| 209 |
+
array = tf.train.load_variable(tf_path, name)
|
| 210 |
+
names.append(name)
|
| 211 |
+
arrays.append(array.squeeze())
|
| 212 |
+
|
| 213 |
+
for name, array in zip(names, arrays):
|
| 214 |
+
name = name[6:] # skip "model/"
|
| 215 |
+
name = name.split("/")
|
| 216 |
+
pointer = model
|
| 217 |
+
for m_name in name:
|
| 218 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
| 219 |
+
scope_names = re.split(r"(\d+)", m_name)
|
| 220 |
+
else:
|
| 221 |
+
scope_names = [m_name]
|
| 222 |
+
if scope_names[0] == "w" or scope_names[0] == "g":
|
| 223 |
+
pointer = getattr(pointer, "weight")
|
| 224 |
+
elif scope_names[0] == "b":
|
| 225 |
+
pointer = getattr(pointer, "bias")
|
| 226 |
+
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
| 227 |
+
pointer = getattr(pointer, scope_names[0])
|
| 228 |
+
pointer = getattr(pointer, "weight")
|
| 229 |
+
else:
|
| 230 |
+
pointer = getattr(pointer, scope_names[0])
|
| 231 |
+
if len(scope_names) >= 2:
|
| 232 |
+
num = int(scope_names[1])
|
| 233 |
+
pointer = pointer[num]
|
| 234 |
+
try:
|
| 235 |
+
assert (
|
| 236 |
+
pointer.shape == array.shape
|
| 237 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
| 238 |
+
except AssertionError as e:
|
| 239 |
+
e.args += (pointer.shape, array.shape)
|
| 240 |
+
raise
|
| 241 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
| 242 |
+
pointer.data = torch.from_numpy(array)
|
| 243 |
+
return model
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class CrystalCoderAttention(nn.Module):
|
| 247 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
| 248 |
+
super().__init__()
|
| 249 |
+
|
| 250 |
+
max_positions = config.max_position_embeddings
|
| 251 |
+
self.register_buffer(
|
| 252 |
+
"bias",
|
| 253 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
| 254 |
+
1, 1, max_positions, max_positions
|
| 255 |
+
),
|
| 256 |
+
persistent=False,
|
| 257 |
+
)
|
| 258 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
| 259 |
+
|
| 260 |
+
self.embed_dim = config.hidden_size
|
| 261 |
+
self.num_heads = config.num_attention_heads
|
| 262 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 263 |
+
self.split_size = self.embed_dim
|
| 264 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 265 |
+
raise ValueError(
|
| 266 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 267 |
+
f" {self.num_heads})."
|
| 268 |
+
)
|
| 269 |
+
if config.position_embedding_type == "rotary":
|
| 270 |
+
rotary_dim = config.rotary_dim or self.head_dim
|
| 271 |
+
self.rope_helper = RotaryPositionEmbeddingHelper(max_positions, rotary_dim)
|
| 272 |
+
else:
|
| 273 |
+
self.rope_helper = None
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
self.scale_attn_weights = config.scale_attn_weights
|
| 277 |
+
self.is_cross_attention = is_cross_attention
|
| 278 |
+
|
| 279 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
| 280 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
| 281 |
+
self.layer_idx = layer_idx
|
| 282 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
| 283 |
+
|
| 284 |
+
if self.is_cross_attention:
|
| 285 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
| 286 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
| 287 |
+
else:
|
| 288 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
| 289 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
| 290 |
+
|
| 291 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 292 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 293 |
+
|
| 294 |
+
self.pruned_heads = set()
|
| 295 |
+
|
| 296 |
+
self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
|
| 297 |
+
|
| 298 |
+
def prune_heads(self, heads):
|
| 299 |
+
if len(heads) == 0:
|
| 300 |
+
return
|
| 301 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
| 302 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
| 303 |
+
|
| 304 |
+
# Prune conv1d layers
|
| 305 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
| 306 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
| 307 |
+
|
| 308 |
+
# Update hyper params
|
| 309 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
| 310 |
+
self.num_heads = self.num_heads - len(heads)
|
| 311 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 312 |
+
|
| 313 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None):
|
| 314 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 315 |
+
|
| 316 |
+
if self.scale_attn_weights:
|
| 317 |
+
attn_weights = attn_weights / torch.full(
|
| 318 |
+
[], value.size(-1) ** self.attn_scale_power, dtype=attn_weights.dtype, device=attn_weights.device
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
# Layer-wise attention scaling
|
| 322 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 323 |
+
attn_weights = attn_weights / float(self.layer_idx + 1)
|
| 324 |
+
|
| 325 |
+
if not self.is_cross_attention:
|
| 326 |
+
# if only "normal" attention layer implements causal mask
|
| 327 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 328 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
| 329 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 330 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 331 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 332 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
| 333 |
+
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
| 334 |
+
|
| 335 |
+
if attention_mask is not None:
|
| 336 |
+
# Apply the attention mask
|
| 337 |
+
attn_weights = attn_weights + attention_mask
|
| 338 |
+
|
| 339 |
+
if position_bias is not None:
|
| 340 |
+
attn_weights += position_bias.type_as(attn_weights).unsqueeze(0)
|
| 341 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 342 |
+
|
| 343 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
| 344 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 345 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 346 |
+
|
| 347 |
+
# Mask heads if we want to
|
| 348 |
+
if head_mask is not None:
|
| 349 |
+
attn_weights = attn_weights * head_mask
|
| 350 |
+
|
| 351 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 352 |
+
|
| 353 |
+
return attn_output, attn_weights
|
| 354 |
+
|
| 355 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None):
|
| 356 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
| 357 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
| 358 |
+
_, _, k_seq_len, _ = key.size()
|
| 359 |
+
|
| 360 |
+
# Preallocate attn_weights for `baddbmm`
|
| 361 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
| 362 |
+
|
| 363 |
+
# Compute Scale Factor
|
| 364 |
+
scale_factor = 1.0
|
| 365 |
+
if self.scale_attn_weights:
|
| 366 |
+
scale_factor /= float(value.size(-1)) ** self.attn_scale_power
|
| 367 |
+
|
| 368 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 369 |
+
scale_factor /= float(self.layer_idx + 1)
|
| 370 |
+
|
| 371 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
| 372 |
+
with autocast(enabled=False):
|
| 373 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
| 374 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
| 375 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
| 376 |
+
|
| 377 |
+
if not self.is_cross_attention:
|
| 378 |
+
# if only "normal" attention layer implements causal mask
|
| 379 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 380 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
| 381 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 382 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 383 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 384 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
| 385 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 386 |
+
|
| 387 |
+
if attention_mask is not None:
|
| 388 |
+
# Apply the attention mask
|
| 389 |
+
attn_weights = attn_weights + attention_mask
|
| 390 |
+
|
| 391 |
+
if position_bias is not None:
|
| 392 |
+
attn_weights += position_bias.type_as(attn_weights).unsqueeze(0)
|
| 393 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 394 |
+
|
| 395 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
| 396 |
+
if attn_weights.dtype != torch.float32:
|
| 397 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
| 398 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 399 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 400 |
+
|
| 401 |
+
# Mask heads if we want to
|
| 402 |
+
if head_mask is not None:
|
| 403 |
+
attn_weights = attn_weights * head_mask
|
| 404 |
+
|
| 405 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 406 |
+
|
| 407 |
+
return attn_output, attn_weights
|
| 408 |
+
|
| 409 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
| 410 |
+
"""
|
| 411 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
| 412 |
+
"""
|
| 413 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
| 414 |
+
tensor = tensor.view(new_shape)
|
| 415 |
+
return tensor
|
| 416 |
+
|
| 417 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
| 418 |
+
"""
|
| 419 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
| 420 |
+
"""
|
| 421 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 422 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
| 423 |
+
return tensor.view(new_shape)
|
| 424 |
+
|
| 425 |
+
def forward(
|
| 426 |
+
self,
|
| 427 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 428 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 429 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 430 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 431 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 432 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 433 |
+
use_cache: Optional[bool] = False,
|
| 434 |
+
output_attentions: Optional[bool] = False,
|
| 435 |
+
position_bias: Optional[torch.FloatTensor] = None,
|
| 436 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 437 |
+
if encoder_hidden_states is not None:
|
| 438 |
+
if not hasattr(self, "q_attn"):
|
| 439 |
+
raise ValueError(
|
| 440 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 441 |
+
"Please make sure to instantiate class with `CrystalCoderAttention(..., is_cross_attention=True)`."
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
query = self.q_attn(hidden_states)
|
| 445 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
| 446 |
+
attention_mask = encoder_attention_mask
|
| 447 |
+
else:
|
| 448 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
| 449 |
+
|
| 450 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
| 451 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
| 452 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
| 453 |
+
|
| 454 |
+
# apply rope and transpose
|
| 455 |
+
if self.rope_helper is not None:
|
| 456 |
+
len_past = (layer_past and layer_past[0].size(-2)) or 0
|
| 457 |
+
query = self.rope_helper.rotate_tensor(query, offset=len_past)
|
| 458 |
+
key = self.rope_helper.rotate_tensor(key, offset=len_past)
|
| 459 |
+
query = query.transpose(1, 2)
|
| 460 |
+
key = key.transpose(1, 2)
|
| 461 |
+
value = value.transpose(1, 2)
|
| 462 |
+
|
| 463 |
+
if layer_past is not None:
|
| 464 |
+
past_key, past_value = layer_past
|
| 465 |
+
key = torch.cat((past_key, key), dim=-2)
|
| 466 |
+
value = torch.cat((past_value, value), dim=-2)
|
| 467 |
+
|
| 468 |
+
if use_cache is True:
|
| 469 |
+
present = (key, value)
|
| 470 |
+
else:
|
| 471 |
+
present = None
|
| 472 |
+
|
| 473 |
+
if self.reorder_and_upcast_attn:
|
| 474 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
| 475 |
+
query, key, value, attention_mask, head_mask, position_bias
|
| 476 |
+
)
|
| 477 |
+
else:
|
| 478 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask, position_bias)
|
| 479 |
+
|
| 480 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
| 481 |
+
attn_output = self.c_proj(attn_output)
|
| 482 |
+
attn_output = self.resid_dropout(attn_output)
|
| 483 |
+
|
| 484 |
+
outputs = (attn_output, present)
|
| 485 |
+
if output_attentions:
|
| 486 |
+
outputs += (attn_weights,)
|
| 487 |
+
|
| 488 |
+
return outputs # a, present, (attentions)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
class CrystalCoderMLP(nn.Module):
|
| 492 |
+
def __init__(self, intermediate_size, config):
|
| 493 |
+
super().__init__()
|
| 494 |
+
embed_dim = config.hidden_size
|
| 495 |
+
self.swiglu = config.activation_function == "swiglu"
|
| 496 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
| 497 |
+
self.c_fc2 = Conv1D(intermediate_size, embed_dim) if self.swiglu else None
|
| 498 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
| 499 |
+
self.act = SwiGLUActivation() if self.swiglu else ACT2FN[config.activation_function]
|
| 500 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 501 |
+
|
| 502 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
| 503 |
+
if self.swiglu:
|
| 504 |
+
hidden_states2 = self.c_fc2(hidden_states)
|
| 505 |
+
hidden_states = self.c_fc(hidden_states)
|
| 506 |
+
hidden_states = self.act(hidden_states, hidden_states2) if self.swiglu else self.act(hidden_states)
|
| 507 |
+
hidden_states = self.c_proj(hidden_states)
|
| 508 |
+
hidden_states = self.dropout(hidden_states)
|
| 509 |
+
return hidden_states
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
class CrystalCoderBlock(nn.Module):
|
| 513 |
+
def __init__(self, config, layer_idx=None):
|
| 514 |
+
super().__init__()
|
| 515 |
+
hidden_size = config.hidden_size
|
| 516 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
| 517 |
+
|
| 518 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 519 |
+
self.attn = CrystalCoderAttention(config, layer_idx=layer_idx)
|
| 520 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 521 |
+
|
| 522 |
+
if config.add_cross_attention:
|
| 523 |
+
self.crossattention = CrystalCoderAttention(config, is_cross_attention=True, layer_idx=layer_idx)
|
| 524 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 525 |
+
|
| 526 |
+
self.mlp = CrystalCoderMLP(inner_dim, config)
|
| 527 |
+
|
| 528 |
+
def forward(
|
| 529 |
+
self,
|
| 530 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 531 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 532 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 533 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 534 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 535 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 536 |
+
use_cache: Optional[bool] = False,
|
| 537 |
+
output_attentions: Optional[bool] = False,
|
| 538 |
+
position_bias: Optional[torch.FloatTensor] = None,
|
| 539 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
| 540 |
+
residual = hidden_states
|
| 541 |
+
hidden_states = self.ln_1(hidden_states)
|
| 542 |
+
attn_outputs = self.attn(
|
| 543 |
+
hidden_states,
|
| 544 |
+
layer_past=layer_past,
|
| 545 |
+
attention_mask=attention_mask,
|
| 546 |
+
head_mask=head_mask,
|
| 547 |
+
use_cache=use_cache,
|
| 548 |
+
output_attentions=output_attentions,
|
| 549 |
+
position_bias=position_bias,
|
| 550 |
+
)
|
| 551 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 552 |
+
outputs = attn_outputs[1:]
|
| 553 |
+
# residual connection
|
| 554 |
+
hidden_states = attn_output + residual
|
| 555 |
+
|
| 556 |
+
if encoder_hidden_states is not None:
|
| 557 |
+
# add one self-attention block for cross-attention
|
| 558 |
+
if not hasattr(self, "crossattention"):
|
| 559 |
+
raise ValueError(
|
| 560 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
| 561 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
| 562 |
+
)
|
| 563 |
+
residual = hidden_states
|
| 564 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
| 565 |
+
cross_attn_outputs = self.crossattention(
|
| 566 |
+
hidden_states,
|
| 567 |
+
attention_mask=attention_mask,
|
| 568 |
+
head_mask=head_mask,
|
| 569 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 570 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 571 |
+
output_attentions=output_attentions,
|
| 572 |
+
position_bias=position_bias,
|
| 573 |
+
)
|
| 574 |
+
attn_output = cross_attn_outputs[0]
|
| 575 |
+
# residual connection
|
| 576 |
+
hidden_states = residual + attn_output
|
| 577 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
| 578 |
+
|
| 579 |
+
residual = hidden_states
|
| 580 |
+
hidden_states = self.ln_2(hidden_states)
|
| 581 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
| 582 |
+
# residual connection
|
| 583 |
+
hidden_states = residual + feed_forward_hidden_states
|
| 584 |
+
|
| 585 |
+
if use_cache:
|
| 586 |
+
outputs = (hidden_states,) + outputs
|
| 587 |
+
else:
|
| 588 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 589 |
+
|
| 590 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
class CrystalCoderPreTrainedModel(PreTrainedModel):
|
| 594 |
+
"""
|
| 595 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 596 |
+
models.
|
| 597 |
+
"""
|
| 598 |
+
|
| 599 |
+
config_class = CrystalCoderConfig
|
| 600 |
+
load_tf_weights = load_tf_weights_in_crystalcoder
|
| 601 |
+
base_model_prefix = "transformer"
|
| 602 |
+
is_parallelizable = True
|
| 603 |
+
supports_gradient_checkpointing = True
|
| 604 |
+
_no_split_modules = ["CrystalCoderBlock"]
|
| 605 |
+
_skip_keys_device_placement = "past_key_values"
|
| 606 |
+
|
| 607 |
+
def __init__(self, *inputs, **kwargs):
|
| 608 |
+
super().__init__(*inputs, **kwargs)
|
| 609 |
+
|
| 610 |
+
def _init_weights(self, module):
|
| 611 |
+
"""Initialize the weights."""
|
| 612 |
+
mup_init_scale = math.sqrt(self.config.mup_width_scale)
|
| 613 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
| 614 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 615 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 616 |
+
module.weight.data.normal_(mean=0.0, std=(self.config.initializer_range * mup_init_scale))
|
| 617 |
+
if module.bias is not None:
|
| 618 |
+
module.bias.data.zero_()
|
| 619 |
+
elif isinstance(module, nn.Embedding):
|
| 620 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 621 |
+
if module.padding_idx is not None:
|
| 622 |
+
module.weight.data[module.padding_idx].zero_()
|
| 623 |
+
elif isinstance(module, nn.LayerNorm):
|
| 624 |
+
module.bias.data.zero_()
|
| 625 |
+
module.weight.data.fill_(1.0)
|
| 626 |
+
|
| 627 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 628 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 629 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 630 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 631 |
+
#
|
| 632 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 633 |
+
for name, p in module.named_parameters():
|
| 634 |
+
if name == "c_proj.weight":
|
| 635 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 636 |
+
stddev = self.config.initializer_range * mup_init_scale / math.sqrt(2 * self.config.n_layer)
|
| 637 |
+
p.data.normal_(mean=0.0, std=stddev)
|
| 638 |
+
|
| 639 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 640 |
+
if isinstance(module, CrystalCoderModel):
|
| 641 |
+
module.gradient_checkpointing = value
|
| 642 |
+
|
| 643 |
+
def get_mup_param_groups(self, lr, weight_decay=0.0, decoupled_wd=True):
|
| 644 |
+
"""
|
| 645 |
+
Returns list of dicts defining parameter groups for muP:
|
| 646 |
+
group 0: most model params get scaled learning rate and weight decay.
|
| 647 |
+
group 1: embedding layer gets non-scaled learning rate and weight decay.
|
| 648 |
+
group 2: normalization layers and biases get non-scaled learning rate only.
|
| 649 |
+
|
| 650 |
+
The output can be passed to Adam-base optimizers
|
| 651 |
+
e.g.
|
| 652 |
+
param_groups = model.get_mup_param_groups(lr=1e-3, weight_decay=0.1)
|
| 653 |
+
torch.optim.AdamW(param_groups, betas=(0.9, 0.95), eps=1e-8)
|
| 654 |
+
"""
|
| 655 |
+
norm_modules = (
|
| 656 |
+
torch.nn.LayerNorm,
|
| 657 |
+
torch.nn.BatchNorm1d,
|
| 658 |
+
torch.nn.BatchNorm2d,
|
| 659 |
+
torch.nn.BatchNorm3d,
|
| 660 |
+
torch.nn.InstanceNorm1d,
|
| 661 |
+
torch.nn.InstanceNorm2d,
|
| 662 |
+
torch.nn.InstanceNorm3d,
|
| 663 |
+
torch.nn.GroupNorm,
|
| 664 |
+
torch.nn.SyncBatchNorm,
|
| 665 |
+
torch.nn.LocalResponseNorm,
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
def get_group_index(param_name):
|
| 669 |
+
for name, module in self.named_modules():
|
| 670 |
+
if name in param_name:
|
| 671 |
+
if isinstance(module, norm_modules):
|
| 672 |
+
return 2
|
| 673 |
+
elif isinstance(module, torch.nn.Embedding):
|
| 674 |
+
return 1
|
| 675 |
+
return 0
|
| 676 |
+
|
| 677 |
+
width_scale = self.config.mup_width_scale
|
| 678 |
+
new_param_groups = []
|
| 679 |
+
new_param_groups.append({"params": [], "lr": lr * width_scale, "weight_decay": weight_decay})
|
| 680 |
+
if not decoupled_wd:
|
| 681 |
+
new_param_groups[0]["weight_decay"] /= width_scale
|
| 682 |
+
new_param_groups.append({"params": [], "lr": lr, "weight_decay": weight_decay})
|
| 683 |
+
new_param_groups.append({"params": [], "lr": lr, "weight_decay": 0.0})
|
| 684 |
+
|
| 685 |
+
for name, param in self.named_parameters():
|
| 686 |
+
if not param.requires_grad:
|
| 687 |
+
continue
|
| 688 |
+
|
| 689 |
+
if name.endswith("bias"):
|
| 690 |
+
new_param_groups[2]["params"].append(param)
|
| 691 |
+
else:
|
| 692 |
+
new_param_groups[get_group_index(name)]["params"].append(param)
|
| 693 |
+
|
| 694 |
+
for idx, param_group in enumerate(new_param_groups):
|
| 695 |
+
if len(param_group["params"]) == 0:
|
| 696 |
+
del new_param_groups[idx]
|
| 697 |
+
|
| 698 |
+
return new_param_groups
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
CrystalCoder_START_DOCSTRING = r"""
|
| 702 |
+
|
| 703 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 704 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 705 |
+
etc.)
|
| 706 |
+
|
| 707 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 708 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 709 |
+
and behavior.
|
| 710 |
+
|
| 711 |
+
Parameters:
|
| 712 |
+
config ([`CrystalCoderConfig`]): Model configuration class with all the parameters of the model.
|
| 713 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 714 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 715 |
+
"""
|
| 716 |
+
|
| 717 |
+
CrystalCoder_INPUTS_DOCSTRING = r"""
|
| 718 |
+
Args:
|
| 719 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 720 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 721 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 722 |
+
sequence tokens in the vocabulary.
|
| 723 |
+
|
| 724 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 725 |
+
`input_ids`.
|
| 726 |
+
|
| 727 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 728 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 729 |
+
|
| 730 |
+
[What are input IDs?](../glossary#input-ids)
|
| 731 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
| 732 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 733 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
| 734 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
| 735 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 736 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 737 |
+
|
| 738 |
+
- 1 for tokens that are **not masked**,
|
| 739 |
+
- 0 for tokens that are **masked**.
|
| 740 |
+
|
| 741 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
| 742 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
| 743 |
+
`len(past_key_values) + len(input_ids)`
|
| 744 |
+
|
| 745 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 746 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
| 747 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 748 |
+
1]`:
|
| 749 |
+
|
| 750 |
+
- 0 corresponds to a *sentence A* token,
|
| 751 |
+
- 1 corresponds to a *sentence B* token.
|
| 752 |
+
|
| 753 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 754 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 755 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 756 |
+
config.max_position_embeddings - 1]`.
|
| 757 |
+
|
| 758 |
+
[What are position IDs?](../glossary#position-ids)
|
| 759 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 760 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 761 |
+
|
| 762 |
+
- 1 indicates the head is **not masked**,
|
| 763 |
+
- 0 indicates the head is **masked**.
|
| 764 |
+
|
| 765 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 766 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 767 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 768 |
+
model's internal embedding lookup matrix.
|
| 769 |
+
|
| 770 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
| 771 |
+
`past_key_values`).
|
| 772 |
+
use_cache (`bool`, *optional*):
|
| 773 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 774 |
+
`past_key_values`).
|
| 775 |
+
output_attentions (`bool`, *optional*):
|
| 776 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 777 |
+
tensors for more detail.
|
| 778 |
+
output_hidden_states (`bool`, *optional*):
|
| 779 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 780 |
+
more detail.
|
| 781 |
+
return_dict (`bool`, *optional*):
|
| 782 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 783 |
+
"""
|
| 784 |
+
PARALLELIZE_DOCSTRING = r"""
|
| 785 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
| 786 |
+
|
| 787 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
| 788 |
+
it will evenly distribute blocks across all devices.
|
| 789 |
+
|
| 790 |
+
Args:
|
| 791 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
| 792 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
| 793 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
| 794 |
+
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
| 795 |
+
following number of attention modules:
|
| 796 |
+
|
| 797 |
+
- gpt2: 12
|
| 798 |
+
- gpt2-medium: 24
|
| 799 |
+
- gpt2-large: 36
|
| 800 |
+
- gpt2-xl: 48
|
| 801 |
+
|
| 802 |
+
Example:
|
| 803 |
+
|
| 804 |
+
```python
|
| 805 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
|
| 806 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
|
| 807 |
+
device_map = {
|
| 808 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
| 809 |
+
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
|
| 810 |
+
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
|
| 811 |
+
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
|
| 812 |
+
}
|
| 813 |
+
model.parallelize(device_map)
|
| 814 |
+
```
|
| 815 |
+
"""
|
| 816 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
| 817 |
+
Moves the model to cpu from a model parallel state.
|
| 818 |
+
|
| 819 |
+
Example:
|
| 820 |
+
|
| 821 |
+
```python
|
| 822 |
+
# On a 4 GPU machine with gpt2-large:
|
| 823 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-large")
|
| 824 |
+
device_map = {
|
| 825 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7],
|
| 826 |
+
1: [8, 9, 10, 11, 12, 13, 14, 15],
|
| 827 |
+
2: [16, 17, 18, 19, 20, 21, 22, 23],
|
| 828 |
+
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
|
| 829 |
+
}
|
| 830 |
+
model.parallelize(device_map) # Splits the model across several devices
|
| 831 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
| 832 |
+
```
|
| 833 |
+
"""
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
@add_start_docstrings(
|
| 837 |
+
"The bare CrystalCoder Model transformer outputting raw hidden-states without any specific head on top.",
|
| 838 |
+
CrystalCoder_START_DOCSTRING,
|
| 839 |
+
)
|
| 840 |
+
class CrystalCoderModel(CrystalCoderPreTrainedModel):
|
| 841 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
|
| 842 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
|
| 843 |
+
|
| 844 |
+
def __init__(self, config):
|
| 845 |
+
super().__init__(config)
|
| 846 |
+
|
| 847 |
+
self.embed_dim = config.hidden_size
|
| 848 |
+
|
| 849 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 850 |
+
self.wpe = (
|
| 851 |
+
nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
| 852 |
+
if config.position_embedding_type == "learned"
|
| 853 |
+
else None
|
| 854 |
+
)
|
| 855 |
+
self.embeddings_scale = config.mup_embeddings_scale
|
| 856 |
+
|
| 857 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 858 |
+
self.h = nn.ModuleList([CrystalCoderBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
| 859 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 860 |
+
|
| 861 |
+
self.relative_pe = (
|
| 862 |
+
AlibiPositionEmbeddingLayer(config.num_attention_heads)
|
| 863 |
+
if config.position_embedding_type == "alibi"
|
| 864 |
+
else None
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
# Model parallel
|
| 868 |
+
self.model_parallel = False
|
| 869 |
+
self.device_map = None
|
| 870 |
+
self.gradient_checkpointing = False
|
| 871 |
+
|
| 872 |
+
# Initialize weights and apply final processing
|
| 873 |
+
self.post_init()
|
| 874 |
+
|
| 875 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 876 |
+
def parallelize(self, device_map=None):
|
| 877 |
+
# Check validity of device_map
|
| 878 |
+
warnings.warn(
|
| 879 |
+
"`CrystalCoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
| 880 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 881 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
| 882 |
+
" ...}",
|
| 883 |
+
FutureWarning,
|
| 884 |
+
)
|
| 885 |
+
self.device_map = (
|
| 886 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
| 887 |
+
)
|
| 888 |
+
assert_device_map(self.device_map, len(self.h))
|
| 889 |
+
self.model_parallel = True
|
| 890 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
| 891 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 892 |
+
self.wte = self.wte.to(self.first_device)
|
| 893 |
+
if self.wpe is not None:
|
| 894 |
+
self.wpe = self.wpe.to(self.first_device)
|
| 895 |
+
# Load onto devices
|
| 896 |
+
for k, v in self.device_map.items():
|
| 897 |
+
for block in v:
|
| 898 |
+
cuda_device = "cuda:" + str(k)
|
| 899 |
+
self.h[block] = self.h[block].to(cuda_device)
|
| 900 |
+
# ln_f to last
|
| 901 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
| 902 |
+
|
| 903 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 904 |
+
def deparallelize(self):
|
| 905 |
+
warnings.warn(
|
| 906 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 907 |
+
FutureWarning,
|
| 908 |
+
)
|
| 909 |
+
self.model_parallel = False
|
| 910 |
+
self.device_map = None
|
| 911 |
+
self.first_device = "cpu"
|
| 912 |
+
self.last_device = "cpu"
|
| 913 |
+
self.wte = self.wte.to("cpu")
|
| 914 |
+
if self.wpe is not None:
|
| 915 |
+
self.wpe = self.wpe.to("cpu")
|
| 916 |
+
for index in range(len(self.h)):
|
| 917 |
+
self.h[index] = self.h[index].to("cpu")
|
| 918 |
+
self.ln_f = self.ln_f.to("cpu")
|
| 919 |
+
torch.cuda.empty_cache()
|
| 920 |
+
|
| 921 |
+
def get_input_embeddings(self):
|
| 922 |
+
return self.wte
|
| 923 |
+
|
| 924 |
+
def set_input_embeddings(self, new_embeddings):
|
| 925 |
+
self.wte = new_embeddings
|
| 926 |
+
|
| 927 |
+
def _prune_heads(self, heads_to_prune):
|
| 928 |
+
"""
|
| 929 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
| 930 |
+
"""
|
| 931 |
+
for layer, heads in heads_to_prune.items():
|
| 932 |
+
self.h[layer].attn.prune_heads(heads)
|
| 933 |
+
|
| 934 |
+
@add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
|
| 935 |
+
def forward(
|
| 936 |
+
self,
|
| 937 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 938 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 939 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 940 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 941 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 942 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 943 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 944 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 945 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 946 |
+
use_cache: Optional[bool] = None,
|
| 947 |
+
output_attentions: Optional[bool] = None,
|
| 948 |
+
output_hidden_states: Optional[bool] = None,
|
| 949 |
+
return_dict: Optional[bool] = None,
|
| 950 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
| 951 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 952 |
+
output_hidden_states = (
|
| 953 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 954 |
+
)
|
| 955 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 956 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 957 |
+
|
| 958 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 959 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 960 |
+
elif input_ids is not None:
|
| 961 |
+
input_shape = input_ids.size()
|
| 962 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 963 |
+
batch_size = input_ids.shape[0]
|
| 964 |
+
elif inputs_embeds is not None:
|
| 965 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 966 |
+
batch_size = inputs_embeds.shape[0]
|
| 967 |
+
else:
|
| 968 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 969 |
+
|
| 970 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 971 |
+
|
| 972 |
+
if token_type_ids is not None:
|
| 973 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 974 |
+
if position_ids is not None:
|
| 975 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
| 976 |
+
|
| 977 |
+
if past_key_values is None:
|
| 978 |
+
past_length = 0
|
| 979 |
+
past_key_values = tuple([None] * len(self.h))
|
| 980 |
+
else:
|
| 981 |
+
past_length = past_key_values[0][0].size(-2)
|
| 982 |
+
if position_ids is None:
|
| 983 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
| 984 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 985 |
+
|
| 986 |
+
# CrystalCoderAttention mask.
|
| 987 |
+
if attention_mask is not None:
|
| 988 |
+
if batch_size <= 0:
|
| 989 |
+
raise ValueError("batch_size has to be defined and > 0")
|
| 990 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
| 991 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
| 992 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 993 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 994 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
| 995 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 996 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 997 |
+
|
| 998 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 999 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 1000 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
| 1001 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 1002 |
+
# effectively the same as removing these entirely.
|
| 1003 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 1004 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
| 1005 |
+
|
| 1006 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 1007 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 1008 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 1009 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 1010 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 1011 |
+
if encoder_attention_mask is None:
|
| 1012 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 1013 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 1014 |
+
else:
|
| 1015 |
+
encoder_attention_mask = None
|
| 1016 |
+
|
| 1017 |
+
# Prepare head mask if needed
|
| 1018 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1019 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1020 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
| 1021 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 1022 |
+
|
| 1023 |
+
if inputs_embeds is None:
|
| 1024 |
+
inputs_embeds = self.wte(input_ids)
|
| 1025 |
+
if self.wpe is not None:
|
| 1026 |
+
position_embeds = self.wpe(position_ids)
|
| 1027 |
+
hidden_states = inputs_embeds + position_embeds
|
| 1028 |
+
else:
|
| 1029 |
+
hidden_states = inputs_embeds
|
| 1030 |
+
hidden_states *= torch.tensor(
|
| 1031 |
+
float(self.embeddings_scale), dtype=hidden_states.dtype, device=hidden_states.device
|
| 1032 |
+
)
|
| 1033 |
+
|
| 1034 |
+
if token_type_ids is not None:
|
| 1035 |
+
token_type_embeds = self.wte(token_type_ids)
|
| 1036 |
+
hidden_states = hidden_states + token_type_embeds
|
| 1037 |
+
|
| 1038 |
+
hidden_states = self.drop(hidden_states)
|
| 1039 |
+
|
| 1040 |
+
if self.relative_pe is not None:
|
| 1041 |
+
length = input_ids.shape[1]
|
| 1042 |
+
cached_kv_length = 0
|
| 1043 |
+
cached_kv = past_key_values[0]
|
| 1044 |
+
if cached_kv is not None:
|
| 1045 |
+
cached_kv_length = cached_kv[0].shape[-2]
|
| 1046 |
+
position_bias = self.relative_pe(length, length, cached_kv_length)
|
| 1047 |
+
else:
|
| 1048 |
+
position_bias = None
|
| 1049 |
+
|
| 1050 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
| 1051 |
+
|
| 1052 |
+
if self.gradient_checkpointing and self.training:
|
| 1053 |
+
if use_cache:
|
| 1054 |
+
logger.warning_once(
|
| 1055 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1056 |
+
)
|
| 1057 |
+
use_cache = False
|
| 1058 |
+
|
| 1059 |
+
presents = () if use_cache else None
|
| 1060 |
+
all_self_attentions = () if output_attentions else None
|
| 1061 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 1062 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1063 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 1064 |
+
# Model parallel
|
| 1065 |
+
if self.model_parallel:
|
| 1066 |
+
torch.cuda.set_device(hidden_states.device)
|
| 1067 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 1068 |
+
if layer_past is not None:
|
| 1069 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
| 1070 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 1071 |
+
if attention_mask is not None:
|
| 1072 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 1073 |
+
if isinstance(head_mask, torch.Tensor):
|
| 1074 |
+
head_mask = head_mask.to(hidden_states.device)
|
| 1075 |
+
if output_hidden_states:
|
| 1076 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 1077 |
+
|
| 1078 |
+
if self.gradient_checkpointing and self.training:
|
| 1079 |
+
|
| 1080 |
+
def create_custom_forward(module):
|
| 1081 |
+
def custom_forward(*inputs):
|
| 1082 |
+
# None for past_key_value
|
| 1083 |
+
return module(*inputs, use_cache, output_attentions)
|
| 1084 |
+
|
| 1085 |
+
return custom_forward
|
| 1086 |
+
|
| 1087 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
| 1088 |
+
create_custom_forward(block),
|
| 1089 |
+
hidden_states,
|
| 1090 |
+
None,
|
| 1091 |
+
attention_mask,
|
| 1092 |
+
head_mask[i],
|
| 1093 |
+
encoder_hidden_states,
|
| 1094 |
+
encoder_attention_mask,
|
| 1095 |
+
)
|
| 1096 |
+
else:
|
| 1097 |
+
outputs = block(
|
| 1098 |
+
hidden_states,
|
| 1099 |
+
layer_past=layer_past,
|
| 1100 |
+
attention_mask=attention_mask,
|
| 1101 |
+
head_mask=head_mask[i],
|
| 1102 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1103 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1104 |
+
use_cache=use_cache,
|
| 1105 |
+
output_attentions=output_attentions,
|
| 1106 |
+
position_bias=position_bias,
|
| 1107 |
+
)
|
| 1108 |
+
|
| 1109 |
+
hidden_states = outputs[0]
|
| 1110 |
+
if use_cache is True:
|
| 1111 |
+
presents = presents + (outputs[1],)
|
| 1112 |
+
|
| 1113 |
+
if output_attentions:
|
| 1114 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 1115 |
+
if self.config.add_cross_attention:
|
| 1116 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
| 1117 |
+
|
| 1118 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 1119 |
+
if self.model_parallel:
|
| 1120 |
+
for k, v in self.device_map.items():
|
| 1121 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 1122 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 1123 |
+
|
| 1124 |
+
hidden_states = self.ln_f(hidden_states)
|
| 1125 |
+
|
| 1126 |
+
hidden_states = hidden_states.view(output_shape)
|
| 1127 |
+
# Add last hidden state
|
| 1128 |
+
if output_hidden_states:
|
| 1129 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 1130 |
+
|
| 1131 |
+
if not return_dict:
|
| 1132 |
+
return tuple(
|
| 1133 |
+
v
|
| 1134 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
| 1135 |
+
if v is not None
|
| 1136 |
+
)
|
| 1137 |
+
|
| 1138 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 1139 |
+
last_hidden_state=hidden_states,
|
| 1140 |
+
past_key_values=presents,
|
| 1141 |
+
hidden_states=all_hidden_states,
|
| 1142 |
+
attentions=all_self_attentions,
|
| 1143 |
+
cross_attentions=all_cross_attentions,
|
| 1144 |
+
)
|
| 1145 |
+
|
| 1146 |
+
|
| 1147 |
+
@add_start_docstrings(
|
| 1148 |
+
"""
|
| 1149 |
+
The CrystalCoder Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
| 1150 |
+
embeddings).
|
| 1151 |
+
""",
|
| 1152 |
+
CrystalCoder_START_DOCSTRING,
|
| 1153 |
+
)
|
| 1154 |
+
class CrystalCoderLMHeadModel(CrystalCoderPreTrainedModel):
|
| 1155 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
| 1156 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
|
| 1157 |
+
|
| 1158 |
+
def __init__(self, config):
|
| 1159 |
+
super().__init__(config)
|
| 1160 |
+
self.transformer = CrystalCoderModel(config)
|
| 1161 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1162 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1163 |
+
|
| 1164 |
+
# Model parallel
|
| 1165 |
+
self.model_parallel = False
|
| 1166 |
+
self.device_map = None
|
| 1167 |
+
|
| 1168 |
+
# Initialize weights and apply final processing
|
| 1169 |
+
self.post_init()
|
| 1170 |
+
|
| 1171 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 1172 |
+
def parallelize(self, device_map=None):
|
| 1173 |
+
warnings.warn(
|
| 1174 |
+
"`CrystalCoderLMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
| 1175 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
| 1176 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
| 1177 |
+
" 0, 'transformer.h.1': 1, ...}",
|
| 1178 |
+
FutureWarning,
|
| 1179 |
+
)
|
| 1180 |
+
self.device_map = (
|
| 1181 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
| 1182 |
+
if device_map is None
|
| 1183 |
+
else device_map
|
| 1184 |
+
)
|
| 1185 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
| 1186 |
+
self.transformer.parallelize(self.device_map)
|
| 1187 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
| 1188 |
+
self.model_parallel = True
|
| 1189 |
+
|
| 1190 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 1191 |
+
def deparallelize(self):
|
| 1192 |
+
warnings.warn(
|
| 1193 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
| 1194 |
+
FutureWarning,
|
| 1195 |
+
)
|
| 1196 |
+
self.transformer.deparallelize()
|
| 1197 |
+
self.transformer = self.transformer.to("cpu")
|
| 1198 |
+
self.lm_head = self.lm_head.to("cpu")
|
| 1199 |
+
self.model_parallel = False
|
| 1200 |
+
torch.cuda.empty_cache()
|
| 1201 |
+
|
| 1202 |
+
def get_output_embeddings(self):
|
| 1203 |
+
return self.lm_head
|
| 1204 |
+
|
| 1205 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1206 |
+
self.lm_head = new_embeddings
|
| 1207 |
+
|
| 1208 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
| 1209 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 1210 |
+
# only last token for inputs_ids if past is defined in kwargs
|
| 1211 |
+
if past_key_values:
|
| 1212 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 1213 |
+
if token_type_ids is not None:
|
| 1214 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 1215 |
+
|
| 1216 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 1217 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1218 |
+
|
| 1219 |
+
if attention_mask is not None and position_ids is None:
|
| 1220 |
+
# create position_ids on the fly for batch generation
|
| 1221 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1222 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1223 |
+
if past_key_values:
|
| 1224 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 1225 |
+
else:
|
| 1226 |
+
position_ids = None
|
| 1227 |
+
|
| 1228 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1229 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1230 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1231 |
+
else:
|
| 1232 |
+
model_inputs = {"input_ids": input_ids}
|
| 1233 |
+
|
| 1234 |
+
model_inputs.update(
|
| 1235 |
+
{
|
| 1236 |
+
"past_key_values": past_key_values,
|
| 1237 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1238 |
+
"position_ids": position_ids,
|
| 1239 |
+
"attention_mask": attention_mask,
|
| 1240 |
+
"token_type_ids": token_type_ids,
|
| 1241 |
+
}
|
| 1242 |
+
)
|
| 1243 |
+
return model_inputs
|
| 1244 |
+
|
| 1245 |
+
@add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
|
| 1246 |
+
def forward(
|
| 1247 |
+
self,
|
| 1248 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1249 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1250 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1251 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1252 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1253 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1254 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1255 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1256 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1257 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1258 |
+
use_cache: Optional[bool] = None,
|
| 1259 |
+
output_attentions: Optional[bool] = None,
|
| 1260 |
+
output_hidden_states: Optional[bool] = None,
|
| 1261 |
+
return_dict: Optional[bool] = None,
|
| 1262 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 1263 |
+
r"""
|
| 1264 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1265 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1266 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 1267 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 1268 |
+
"""
|
| 1269 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1270 |
+
|
| 1271 |
+
transformer_outputs = self.transformer(
|
| 1272 |
+
input_ids,
|
| 1273 |
+
past_key_values=past_key_values,
|
| 1274 |
+
attention_mask=attention_mask,
|
| 1275 |
+
token_type_ids=token_type_ids,
|
| 1276 |
+
position_ids=position_ids,
|
| 1277 |
+
head_mask=head_mask,
|
| 1278 |
+
inputs_embeds=inputs_embeds,
|
| 1279 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1280 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1281 |
+
use_cache=use_cache,
|
| 1282 |
+
output_attentions=output_attentions,
|
| 1283 |
+
output_hidden_states=output_hidden_states,
|
| 1284 |
+
return_dict=return_dict,
|
| 1285 |
+
)
|
| 1286 |
+
hidden_states = transformer_outputs[0]
|
| 1287 |
+
|
| 1288 |
+
# Set device for model parallelism
|
| 1289 |
+
if self.model_parallel:
|
| 1290 |
+
torch.cuda.set_device(self.transformer.first_device)
|
| 1291 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
| 1292 |
+
|
| 1293 |
+
lm_logits = self.lm_head(hidden_states)
|
| 1294 |
+
lm_logits *= torch.tensor(float(self.output_logits_scale), dtype=lm_logits.dtype, device=lm_logits.device)
|
| 1295 |
+
|
| 1296 |
+
loss = None
|
| 1297 |
+
if labels is not None:
|
| 1298 |
+
# move labels to correct device to enable model parallelism
|
| 1299 |
+
labels = labels.to(lm_logits.device)
|
| 1300 |
+
# Shift so that tokens < n predict n
|
| 1301 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1302 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1303 |
+
# Flatten the tokens
|
| 1304 |
+
loss_fct = CrossEntropyLoss()
|
| 1305 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1306 |
+
|
| 1307 |
+
if not return_dict:
|
| 1308 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 1309 |
+
return ((loss,) + output) if loss is not None else output
|
| 1310 |
+
|
| 1311 |
+
return CausalLMOutputWithCrossAttentions(
|
| 1312 |
+
loss=loss,
|
| 1313 |
+
logits=lm_logits,
|
| 1314 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1315 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1316 |
+
attentions=transformer_outputs.attentions,
|
| 1317 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
| 1318 |
+
)
|
| 1319 |
+
|
| 1320 |
+
@staticmethod
|
| 1321 |
+
def _reorder_cache(
|
| 1322 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1323 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1324 |
+
"""
|
| 1325 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 1326 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 1327 |
+
beam_idx at every generation step.
|
| 1328 |
+
"""
|
| 1329 |
+
return tuple(
|
| 1330 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
| 1331 |
+
for layer_past in past_key_values
|
| 1332 |
+
)
|
| 1333 |
+
|
| 1334 |
+
|
| 1335 |
+
@add_start_docstrings(
|
| 1336 |
+
"""
|
| 1337 |
+
The CrystalCoder Model transformer with a sequence classification head on top (linear layer).
|
| 1338 |
+
|
| 1339 |
+
[`CrystalCoderForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1340 |
+
(e.g. GPT-1) do.
|
| 1341 |
+
|
| 1342 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1343 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1344 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1345 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1346 |
+
each row of the batch).
|
| 1347 |
+
""",
|
| 1348 |
+
CrystalCoder_START_DOCSTRING,
|
| 1349 |
+
)
|
| 1350 |
+
class CrystalCoderForSequenceClassification(CrystalCoderPreTrainedModel):
|
| 1351 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
|
| 1352 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
|
| 1353 |
+
|
| 1354 |
+
def __init__(self, config):
|
| 1355 |
+
super().__init__(config)
|
| 1356 |
+
self.num_labels = config.num_labels
|
| 1357 |
+
self.transformer = CrystalCoderModel(config)
|
| 1358 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1359 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1360 |
+
|
| 1361 |
+
# Model parallel
|
| 1362 |
+
self.model_parallel = False
|
| 1363 |
+
self.device_map = None
|
| 1364 |
+
|
| 1365 |
+
# Initialize weights and apply final processing
|
| 1366 |
+
self.post_init()
|
| 1367 |
+
|
| 1368 |
+
@add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
|
| 1369 |
+
@add_code_sample_docstrings(
|
| 1370 |
+
checkpoint="microsoft/DialogRPT-updown",
|
| 1371 |
+
output_type=SequenceClassifierOutputWithPast,
|
| 1372 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1373 |
+
)
|
| 1374 |
+
def forward(
|
| 1375 |
+
self,
|
| 1376 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1377 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1378 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1379 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1380 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1381 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1382 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1383 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1384 |
+
use_cache: Optional[bool] = None,
|
| 1385 |
+
output_attentions: Optional[bool] = None,
|
| 1386 |
+
output_hidden_states: Optional[bool] = None,
|
| 1387 |
+
return_dict: Optional[bool] = None,
|
| 1388 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1389 |
+
r"""
|
| 1390 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1391 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1392 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1393 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1394 |
+
"""
|
| 1395 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1396 |
+
|
| 1397 |
+
transformer_outputs = self.transformer(
|
| 1398 |
+
input_ids,
|
| 1399 |
+
past_key_values=past_key_values,
|
| 1400 |
+
attention_mask=attention_mask,
|
| 1401 |
+
token_type_ids=token_type_ids,
|
| 1402 |
+
position_ids=position_ids,
|
| 1403 |
+
head_mask=head_mask,
|
| 1404 |
+
inputs_embeds=inputs_embeds,
|
| 1405 |
+
use_cache=use_cache,
|
| 1406 |
+
output_attentions=output_attentions,
|
| 1407 |
+
output_hidden_states=output_hidden_states,
|
| 1408 |
+
return_dict=return_dict,
|
| 1409 |
+
)
|
| 1410 |
+
hidden_states = transformer_outputs[0]
|
| 1411 |
+
logits = self.score(hidden_states)
|
| 1412 |
+
logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device)
|
| 1413 |
+
|
| 1414 |
+
if input_ids is not None:
|
| 1415 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
| 1416 |
+
else:
|
| 1417 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
| 1418 |
+
|
| 1419 |
+
assert (
|
| 1420 |
+
self.config.pad_token_id is not None or batch_size == 1
|
| 1421 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1422 |
+
if self.config.pad_token_id is None:
|
| 1423 |
+
sequence_lengths = -1
|
| 1424 |
+
else:
|
| 1425 |
+
if input_ids is not None:
|
| 1426 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
| 1427 |
+
else:
|
| 1428 |
+
sequence_lengths = -1
|
| 1429 |
+
logger.warning(
|
| 1430 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1431 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1432 |
+
)
|
| 1433 |
+
|
| 1434 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1435 |
+
|
| 1436 |
+
loss = None
|
| 1437 |
+
if labels is not None:
|
| 1438 |
+
if self.config.problem_type is None:
|
| 1439 |
+
if self.num_labels == 1:
|
| 1440 |
+
self.config.problem_type = "regression"
|
| 1441 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1442 |
+
self.config.problem_type = "single_label_classification"
|
| 1443 |
+
else:
|
| 1444 |
+
self.config.problem_type = "multi_label_classification"
|
| 1445 |
+
|
| 1446 |
+
if self.config.problem_type == "regression":
|
| 1447 |
+
loss_fct = MSELoss()
|
| 1448 |
+
if self.num_labels == 1:
|
| 1449 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1450 |
+
else:
|
| 1451 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1452 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1453 |
+
loss_fct = CrossEntropyLoss()
|
| 1454 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1455 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1456 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1457 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1458 |
+
if not return_dict:
|
| 1459 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1460 |
+
return ((loss,) + output) if loss is not None else output
|
| 1461 |
+
|
| 1462 |
+
return SequenceClassifierOutputWithPast(
|
| 1463 |
+
loss=loss,
|
| 1464 |
+
logits=pooled_logits,
|
| 1465 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1466 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1467 |
+
attentions=transformer_outputs.attentions,
|
| 1468 |
+
)
|
| 1469 |
+
|
| 1470 |
+
|
| 1471 |
+
@add_start_docstrings(
|
| 1472 |
+
"""
|
| 1473 |
+
CrystalCoder Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1474 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1475 |
+
""",
|
| 1476 |
+
CrystalCoder_START_DOCSTRING,
|
| 1477 |
+
)
|
| 1478 |
+
class CrystalCoderForTokenClassification(CrystalCoderPreTrainedModel):
|
| 1479 |
+
def __init__(self, config):
|
| 1480 |
+
super().__init__(config)
|
| 1481 |
+
self.num_labels = config.num_labels
|
| 1482 |
+
|
| 1483 |
+
self.transformer = CrystalCoderModel(config)
|
| 1484 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
| 1485 |
+
classifier_dropout = config.classifier_dropout
|
| 1486 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
| 1487 |
+
classifier_dropout = config.hidden_dropout
|
| 1488 |
+
else:
|
| 1489 |
+
classifier_dropout = 0.1
|
| 1490 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1491 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1492 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1493 |
+
|
| 1494 |
+
# Model parallel
|
| 1495 |
+
self.model_parallel = False
|
| 1496 |
+
self.device_map = None
|
| 1497 |
+
|
| 1498 |
+
# Initialize weights and apply final processing
|
| 1499 |
+
self.post_init()
|
| 1500 |
+
|
| 1501 |
+
@add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
|
| 1502 |
+
# fmt: off
|
| 1503 |
+
@add_code_sample_docstrings(
|
| 1504 |
+
checkpoint="brad1141/gpt2-finetuned-comp2",
|
| 1505 |
+
output_type=TokenClassifierOutput,
|
| 1506 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1507 |
+
expected_loss=0.25,
|
| 1508 |
+
expected_output=["Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead"],
|
| 1509 |
+
)
|
| 1510 |
+
# fmt: on
|
| 1511 |
+
def forward(
|
| 1512 |
+
self,
|
| 1513 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1514 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1515 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1516 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1517 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1518 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1519 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1520 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1521 |
+
use_cache: Optional[bool] = None,
|
| 1522 |
+
output_attentions: Optional[bool] = None,
|
| 1523 |
+
output_hidden_states: Optional[bool] = None,
|
| 1524 |
+
return_dict: Optional[bool] = None,
|
| 1525 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1526 |
+
r"""
|
| 1527 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1528 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1529 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1530 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1531 |
+
"""
|
| 1532 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1533 |
+
|
| 1534 |
+
transformer_outputs = self.transformer(
|
| 1535 |
+
input_ids,
|
| 1536 |
+
past_key_values=past_key_values,
|
| 1537 |
+
attention_mask=attention_mask,
|
| 1538 |
+
token_type_ids=token_type_ids,
|
| 1539 |
+
position_ids=position_ids,
|
| 1540 |
+
head_mask=head_mask,
|
| 1541 |
+
inputs_embeds=inputs_embeds,
|
| 1542 |
+
use_cache=use_cache,
|
| 1543 |
+
output_attentions=output_attentions,
|
| 1544 |
+
output_hidden_states=output_hidden_states,
|
| 1545 |
+
return_dict=return_dict,
|
| 1546 |
+
)
|
| 1547 |
+
|
| 1548 |
+
hidden_states = transformer_outputs[0]
|
| 1549 |
+
hidden_states = self.dropout(hidden_states)
|
| 1550 |
+
logits = self.classifier(hidden_states)
|
| 1551 |
+
logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device)
|
| 1552 |
+
|
| 1553 |
+
loss = None
|
| 1554 |
+
if labels is not None:
|
| 1555 |
+
labels = labels.to(logits.device)
|
| 1556 |
+
loss_fct = CrossEntropyLoss()
|
| 1557 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1558 |
+
|
| 1559 |
+
if not return_dict:
|
| 1560 |
+
output = (logits,) + transformer_outputs[2:]
|
| 1561 |
+
return ((loss,) + output) if loss is not None else output
|
| 1562 |
+
|
| 1563 |
+
return TokenClassifierOutput(
|
| 1564 |
+
loss=loss,
|
| 1565 |
+
logits=logits,
|
| 1566 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1567 |
+
attentions=transformer_outputs.attentions,
|
| 1568 |
+
)
|
| 1569 |
+
|
| 1570 |
+
|
| 1571 |
+
@add_start_docstrings(
|
| 1572 |
+
"""
|
| 1573 |
+
The CrystalCoder Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1574 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1575 |
+
""",
|
| 1576 |
+
CrystalCoder_START_DOCSTRING,
|
| 1577 |
+
)
|
| 1578 |
+
class CrystalCoderForQuestionAnswering(CrystalCoderPreTrainedModel):
|
| 1579 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
|
| 1580 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
|
| 1581 |
+
|
| 1582 |
+
def __init__(self, config):
|
| 1583 |
+
super().__init__(config)
|
| 1584 |
+
self.num_labels = config.num_labels
|
| 1585 |
+
self.transformer = CrystalCoderModel(config)
|
| 1586 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1587 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1588 |
+
|
| 1589 |
+
# Model parallel
|
| 1590 |
+
self.model_parallel = False
|
| 1591 |
+
self.device_map = None
|
| 1592 |
+
self.gradient_checkpointing = False
|
| 1593 |
+
|
| 1594 |
+
# Initialize weights and apply final processing
|
| 1595 |
+
self.post_init()
|
| 1596 |
+
|
| 1597 |
+
@add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1598 |
+
def forward(
|
| 1599 |
+
self,
|
| 1600 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1601 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1602 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1603 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1604 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1605 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1606 |
+
start_positions: Optional[torch.LongTensor] = None,
|
| 1607 |
+
end_positions: Optional[torch.LongTensor] = None,
|
| 1608 |
+
output_attentions: Optional[bool] = None,
|
| 1609 |
+
output_hidden_states: Optional[bool] = None,
|
| 1610 |
+
return_dict: Optional[bool] = None,
|
| 1611 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1612 |
+
r"""
|
| 1613 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1614 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1615 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1616 |
+
are not taken into account for computing the loss.
|
| 1617 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1618 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1619 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1620 |
+
are not taken into account for computing the loss.
|
| 1621 |
+
"""
|
| 1622 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1623 |
+
|
| 1624 |
+
outputs = self.transformer(
|
| 1625 |
+
input_ids,
|
| 1626 |
+
attention_mask=attention_mask,
|
| 1627 |
+
token_type_ids=token_type_ids,
|
| 1628 |
+
position_ids=position_ids,
|
| 1629 |
+
head_mask=head_mask,
|
| 1630 |
+
inputs_embeds=inputs_embeds,
|
| 1631 |
+
output_attentions=output_attentions,
|
| 1632 |
+
output_hidden_states=output_hidden_states,
|
| 1633 |
+
return_dict=return_dict,
|
| 1634 |
+
)
|
| 1635 |
+
|
| 1636 |
+
sequence_output = outputs[0]
|
| 1637 |
+
|
| 1638 |
+
logits = self.qa_outputs(sequence_output)
|
| 1639 |
+
logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device)
|
| 1640 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1641 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1642 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1643 |
+
|
| 1644 |
+
total_loss = None
|
| 1645 |
+
if start_positions is not None and end_positions is not None:
|
| 1646 |
+
# If we are on multi-GPU, split add a dimension
|
| 1647 |
+
if len(start_positions.size()) > 1:
|
| 1648 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
| 1649 |
+
if len(end_positions.size()) > 1:
|
| 1650 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
| 1651 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1652 |
+
ignored_index = start_logits.size(1)
|
| 1653 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1654 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1655 |
+
|
| 1656 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1657 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1658 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1659 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1660 |
+
|
| 1661 |
+
if not return_dict:
|
| 1662 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1663 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1664 |
+
|
| 1665 |
+
return QuestionAnsweringModelOutput(
|
| 1666 |
+
loss=total_loss,
|
| 1667 |
+
start_logits=start_logits,
|
| 1668 |
+
end_logits=end_logits,
|
| 1669 |
+
hidden_states=outputs.hidden_states,
|
| 1670 |
+
attentions=outputs.attentions,
|
| 1671 |
+
)
|
pytorch_model-00001-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebe6b5c1fde84d667aa5c38d505b4e9497a32cbf0bb942ade7cffb4057ac7db2
|
| 3 |
+
size 7812180971
|
pytorch_model-00002-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1837d1c91c7f82e62551ba466ccea119d85808478e71e53983a1fe45f29a36d8
|
| 3 |
+
size 7918113181
|
pytorch_model-00003-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3015eb5d2a135c4c262d666c166f0b08deaae921cdc4565eef0cdc40dea04f68
|
| 3 |
+
size 7918085829
|
pytorch_model-00004-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96a8491eb3eb6b39cb9143cd6c1c8d5f3a49603db520796a490e15fc2ccc7dfd
|
| 3 |
+
size 3311921344
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 26960145024
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"transformer.wte.weight": "pytorch_model-00001-of-00004.bin",
|
| 7 |
+
"transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 8 |
+
"transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 9 |
+
"transformer.h.0.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 10 |
+
"transformer.h.0.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 11 |
+
"transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 12 |
+
"transformer.h.0.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 13 |
+
"transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 14 |
+
"transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 15 |
+
"transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 16 |
+
"transformer.h.0.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 17 |
+
"transformer.h.0.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 18 |
+
"transformer.h.0.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 19 |
+
"transformer.h.0.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 20 |
+
"transformer.h.0.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 21 |
+
"transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 22 |
+
"transformer.h.0.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 23 |
+
"transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 24 |
+
"transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 25 |
+
"transformer.h.1.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 26 |
+
"transformer.h.1.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 27 |
+
"transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 28 |
+
"transformer.h.1.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 29 |
+
"transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 30 |
+
"transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 31 |
+
"transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 32 |
+
"transformer.h.1.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 33 |
+
"transformer.h.1.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 34 |
+
"transformer.h.1.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 35 |
+
"transformer.h.1.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 36 |
+
"transformer.h.1.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 37 |
+
"transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 38 |
+
"transformer.h.1.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 39 |
+
"transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 40 |
+
"transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 41 |
+
"transformer.h.2.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 42 |
+
"transformer.h.2.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 43 |
+
"transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 44 |
+
"transformer.h.2.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 45 |
+
"transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 46 |
+
"transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 47 |
+
"transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 48 |
+
"transformer.h.2.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 49 |
+
"transformer.h.2.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 50 |
+
"transformer.h.2.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 51 |
+
"transformer.h.2.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 52 |
+
"transformer.h.2.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 53 |
+
"transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 54 |
+
"transformer.h.2.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 55 |
+
"transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 56 |
+
"transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 57 |
+
"transformer.h.3.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 58 |
+
"transformer.h.3.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 59 |
+
"transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 60 |
+
"transformer.h.3.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 61 |
+
"transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 62 |
+
"transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 63 |
+
"transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 64 |
+
"transformer.h.3.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 65 |
+
"transformer.h.3.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 66 |
+
"transformer.h.3.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 67 |
+
"transformer.h.3.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 68 |
+
"transformer.h.3.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 69 |
+
"transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 70 |
+
"transformer.h.3.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 71 |
+
"transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 72 |
+
"transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 73 |
+
"transformer.h.4.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 74 |
+
"transformer.h.4.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 75 |
+
"transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 76 |
+
"transformer.h.4.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 77 |
+
"transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 78 |
+
"transformer.h.4.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 79 |
+
"transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 80 |
+
"transformer.h.4.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 81 |
+
"transformer.h.4.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 82 |
+
"transformer.h.4.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 83 |
+
"transformer.h.4.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 84 |
+
"transformer.h.4.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 85 |
+
"transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 86 |
+
"transformer.h.4.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 87 |
+
"transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 88 |
+
"transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 89 |
+
"transformer.h.5.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 90 |
+
"transformer.h.5.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 91 |
+
"transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 92 |
+
"transformer.h.5.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 93 |
+
"transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 94 |
+
"transformer.h.5.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 95 |
+
"transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 96 |
+
"transformer.h.5.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 97 |
+
"transformer.h.5.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 98 |
+
"transformer.h.5.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 99 |
+
"transformer.h.5.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 100 |
+
"transformer.h.5.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 101 |
+
"transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 102 |
+
"transformer.h.5.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 103 |
+
"transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 104 |
+
"transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 105 |
+
"transformer.h.6.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 106 |
+
"transformer.h.6.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 107 |
+
"transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 108 |
+
"transformer.h.6.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 109 |
+
"transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 110 |
+
"transformer.h.6.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 111 |
+
"transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 112 |
+
"transformer.h.6.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 113 |
+
"transformer.h.6.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 114 |
+
"transformer.h.6.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 115 |
+
"transformer.h.6.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 116 |
+
"transformer.h.6.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 117 |
+
"transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 118 |
+
"transformer.h.6.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 119 |
+
"transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 120 |
+
"transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 121 |
+
"transformer.h.7.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 122 |
+
"transformer.h.7.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 123 |
+
"transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 124 |
+
"transformer.h.7.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 125 |
+
"transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 126 |
+
"transformer.h.7.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 127 |
+
"transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 128 |
+
"transformer.h.7.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 129 |
+
"transformer.h.7.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 130 |
+
"transformer.h.7.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 131 |
+
"transformer.h.7.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 132 |
+
"transformer.h.7.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 133 |
+
"transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 134 |
+
"transformer.h.7.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 135 |
+
"transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
|
| 136 |
+
"transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 137 |
+
"transformer.h.8.attn.bias": "pytorch_model-00001-of-00004.bin",
|
| 138 |
+
"transformer.h.8.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
|
| 139 |
+
"transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 140 |
+
"transformer.h.8.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 141 |
+
"transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00004.bin",
|
| 142 |
+
"transformer.h.8.ln_1.bias": "pytorch_model-00001-of-00004.bin",
|
| 143 |
+
"transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00004.bin",
|
| 144 |
+
"transformer.h.8.ln_2.bias": "pytorch_model-00001-of-00004.bin",
|
| 145 |
+
"transformer.h.8.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
|
| 146 |
+
"transformer.h.8.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
|
| 147 |
+
"transformer.h.8.mlp.c_fc2.weight": "pytorch_model-00001-of-00004.bin",
|
| 148 |
+
"transformer.h.8.mlp.c_fc2.bias": "pytorch_model-00001-of-00004.bin",
|
| 149 |
+
"transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 150 |
+
"transformer.h.8.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
|
| 151 |
+
"transformer.h.9.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 152 |
+
"transformer.h.9.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 153 |
+
"transformer.h.9.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 154 |
+
"transformer.h.9.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 155 |
+
"transformer.h.9.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 156 |
+
"transformer.h.9.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 157 |
+
"transformer.h.9.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 158 |
+
"transformer.h.9.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 159 |
+
"transformer.h.9.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 160 |
+
"transformer.h.9.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 161 |
+
"transformer.h.9.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 162 |
+
"transformer.h.9.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 163 |
+
"transformer.h.9.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 164 |
+
"transformer.h.9.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 165 |
+
"transformer.h.9.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 166 |
+
"transformer.h.9.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 167 |
+
"transformer.h.10.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 168 |
+
"transformer.h.10.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 169 |
+
"transformer.h.10.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 170 |
+
"transformer.h.10.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 171 |
+
"transformer.h.10.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 172 |
+
"transformer.h.10.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 173 |
+
"transformer.h.10.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 174 |
+
"transformer.h.10.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 175 |
+
"transformer.h.10.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 176 |
+
"transformer.h.10.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 177 |
+
"transformer.h.10.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 178 |
+
"transformer.h.10.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 179 |
+
"transformer.h.10.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 180 |
+
"transformer.h.10.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 181 |
+
"transformer.h.10.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 182 |
+
"transformer.h.10.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 183 |
+
"transformer.h.11.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 184 |
+
"transformer.h.11.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 185 |
+
"transformer.h.11.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 186 |
+
"transformer.h.11.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 187 |
+
"transformer.h.11.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 188 |
+
"transformer.h.11.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 189 |
+
"transformer.h.11.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 190 |
+
"transformer.h.11.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 191 |
+
"transformer.h.11.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 192 |
+
"transformer.h.11.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 193 |
+
"transformer.h.11.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 194 |
+
"transformer.h.11.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 195 |
+
"transformer.h.11.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 196 |
+
"transformer.h.11.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 197 |
+
"transformer.h.11.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 198 |
+
"transformer.h.11.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 199 |
+
"transformer.h.12.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 200 |
+
"transformer.h.12.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 201 |
+
"transformer.h.12.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 202 |
+
"transformer.h.12.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 203 |
+
"transformer.h.12.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 204 |
+
"transformer.h.12.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 205 |
+
"transformer.h.12.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 206 |
+
"transformer.h.12.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 207 |
+
"transformer.h.12.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 208 |
+
"transformer.h.12.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 209 |
+
"transformer.h.12.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 210 |
+
"transformer.h.12.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 211 |
+
"transformer.h.12.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 212 |
+
"transformer.h.12.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 213 |
+
"transformer.h.12.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 214 |
+
"transformer.h.12.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 215 |
+
"transformer.h.13.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 216 |
+
"transformer.h.13.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 217 |
+
"transformer.h.13.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 218 |
+
"transformer.h.13.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 219 |
+
"transformer.h.13.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 220 |
+
"transformer.h.13.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 221 |
+
"transformer.h.13.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 222 |
+
"transformer.h.13.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 223 |
+
"transformer.h.13.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 224 |
+
"transformer.h.13.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 225 |
+
"transformer.h.13.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 226 |
+
"transformer.h.13.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 227 |
+
"transformer.h.13.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 228 |
+
"transformer.h.13.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 229 |
+
"transformer.h.13.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 230 |
+
"transformer.h.13.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 231 |
+
"transformer.h.14.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 232 |
+
"transformer.h.14.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 233 |
+
"transformer.h.14.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 234 |
+
"transformer.h.14.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 235 |
+
"transformer.h.14.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 236 |
+
"transformer.h.14.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 237 |
+
"transformer.h.14.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 238 |
+
"transformer.h.14.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 239 |
+
"transformer.h.14.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 240 |
+
"transformer.h.14.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 241 |
+
"transformer.h.14.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 242 |
+
"transformer.h.14.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 243 |
+
"transformer.h.14.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 244 |
+
"transformer.h.14.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 245 |
+
"transformer.h.14.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 246 |
+
"transformer.h.14.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 247 |
+
"transformer.h.15.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 248 |
+
"transformer.h.15.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 249 |
+
"transformer.h.15.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 250 |
+
"transformer.h.15.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 251 |
+
"transformer.h.15.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 252 |
+
"transformer.h.15.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 253 |
+
"transformer.h.15.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 254 |
+
"transformer.h.15.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 255 |
+
"transformer.h.15.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 256 |
+
"transformer.h.15.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 257 |
+
"transformer.h.15.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 258 |
+
"transformer.h.15.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 259 |
+
"transformer.h.15.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 260 |
+
"transformer.h.15.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 261 |
+
"transformer.h.15.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 262 |
+
"transformer.h.15.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 263 |
+
"transformer.h.16.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 264 |
+
"transformer.h.16.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 265 |
+
"transformer.h.16.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 266 |
+
"transformer.h.16.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 267 |
+
"transformer.h.16.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 268 |
+
"transformer.h.16.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 269 |
+
"transformer.h.16.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 270 |
+
"transformer.h.16.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 271 |
+
"transformer.h.16.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 272 |
+
"transformer.h.16.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 273 |
+
"transformer.h.16.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 274 |
+
"transformer.h.16.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 275 |
+
"transformer.h.16.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 276 |
+
"transformer.h.16.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 277 |
+
"transformer.h.16.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 278 |
+
"transformer.h.16.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 279 |
+
"transformer.h.17.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 280 |
+
"transformer.h.17.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 281 |
+
"transformer.h.17.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 282 |
+
"transformer.h.17.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 283 |
+
"transformer.h.17.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 284 |
+
"transformer.h.17.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 285 |
+
"transformer.h.17.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 286 |
+
"transformer.h.17.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 287 |
+
"transformer.h.17.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 288 |
+
"transformer.h.17.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 289 |
+
"transformer.h.17.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 290 |
+
"transformer.h.17.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 291 |
+
"transformer.h.17.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 292 |
+
"transformer.h.17.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 293 |
+
"transformer.h.17.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 294 |
+
"transformer.h.17.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 295 |
+
"transformer.h.18.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
|
| 296 |
+
"transformer.h.18.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 297 |
+
"transformer.h.18.attn.bias": "pytorch_model-00002-of-00004.bin",
|
| 298 |
+
"transformer.h.18.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
|
| 299 |
+
"transformer.h.18.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 300 |
+
"transformer.h.18.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
|
| 301 |
+
"transformer.h.18.ln_1.weight": "pytorch_model-00002-of-00004.bin",
|
| 302 |
+
"transformer.h.18.ln_1.bias": "pytorch_model-00002-of-00004.bin",
|
| 303 |
+
"transformer.h.18.ln_2.weight": "pytorch_model-00002-of-00004.bin",
|
| 304 |
+
"transformer.h.18.ln_2.bias": "pytorch_model-00002-of-00004.bin",
|
| 305 |
+
"transformer.h.18.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
|
| 306 |
+
"transformer.h.18.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
|
| 307 |
+
"transformer.h.18.mlp.c_fc2.weight": "pytorch_model-00002-of-00004.bin",
|
| 308 |
+
"transformer.h.18.mlp.c_fc2.bias": "pytorch_model-00002-of-00004.bin",
|
| 309 |
+
"transformer.h.18.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 310 |
+
"transformer.h.18.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 311 |
+
"transformer.h.19.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 312 |
+
"transformer.h.19.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 313 |
+
"transformer.h.19.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 314 |
+
"transformer.h.19.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 315 |
+
"transformer.h.19.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 316 |
+
"transformer.h.19.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 317 |
+
"transformer.h.19.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 318 |
+
"transformer.h.19.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 319 |
+
"transformer.h.19.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 320 |
+
"transformer.h.19.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 321 |
+
"transformer.h.19.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 322 |
+
"transformer.h.19.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 323 |
+
"transformer.h.19.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 324 |
+
"transformer.h.19.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 325 |
+
"transformer.h.19.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 326 |
+
"transformer.h.19.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 327 |
+
"transformer.h.20.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 328 |
+
"transformer.h.20.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 329 |
+
"transformer.h.20.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 330 |
+
"transformer.h.20.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 331 |
+
"transformer.h.20.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 332 |
+
"transformer.h.20.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 333 |
+
"transformer.h.20.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 334 |
+
"transformer.h.20.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 335 |
+
"transformer.h.20.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 336 |
+
"transformer.h.20.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 337 |
+
"transformer.h.20.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 338 |
+
"transformer.h.20.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 339 |
+
"transformer.h.20.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 340 |
+
"transformer.h.20.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 341 |
+
"transformer.h.20.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 342 |
+
"transformer.h.20.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 343 |
+
"transformer.h.21.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 344 |
+
"transformer.h.21.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 345 |
+
"transformer.h.21.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 346 |
+
"transformer.h.21.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 347 |
+
"transformer.h.21.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 348 |
+
"transformer.h.21.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 349 |
+
"transformer.h.21.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 350 |
+
"transformer.h.21.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 351 |
+
"transformer.h.21.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 352 |
+
"transformer.h.21.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 353 |
+
"transformer.h.21.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 354 |
+
"transformer.h.21.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 355 |
+
"transformer.h.21.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 356 |
+
"transformer.h.21.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 357 |
+
"transformer.h.21.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 358 |
+
"transformer.h.21.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 359 |
+
"transformer.h.22.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 360 |
+
"transformer.h.22.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 361 |
+
"transformer.h.22.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 362 |
+
"transformer.h.22.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 363 |
+
"transformer.h.22.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 364 |
+
"transformer.h.22.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 365 |
+
"transformer.h.22.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 366 |
+
"transformer.h.22.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 367 |
+
"transformer.h.22.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 368 |
+
"transformer.h.22.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 369 |
+
"transformer.h.22.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 370 |
+
"transformer.h.22.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 371 |
+
"transformer.h.22.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 372 |
+
"transformer.h.22.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 373 |
+
"transformer.h.22.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 374 |
+
"transformer.h.22.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 375 |
+
"transformer.h.23.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 376 |
+
"transformer.h.23.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 377 |
+
"transformer.h.23.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 378 |
+
"transformer.h.23.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 379 |
+
"transformer.h.23.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 380 |
+
"transformer.h.23.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 381 |
+
"transformer.h.23.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 382 |
+
"transformer.h.23.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 383 |
+
"transformer.h.23.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 384 |
+
"transformer.h.23.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 385 |
+
"transformer.h.23.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 386 |
+
"transformer.h.23.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 387 |
+
"transformer.h.23.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 388 |
+
"transformer.h.23.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 389 |
+
"transformer.h.23.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 390 |
+
"transformer.h.23.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 391 |
+
"transformer.h.24.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 392 |
+
"transformer.h.24.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 393 |
+
"transformer.h.24.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 394 |
+
"transformer.h.24.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 395 |
+
"transformer.h.24.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 396 |
+
"transformer.h.24.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 397 |
+
"transformer.h.24.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 398 |
+
"transformer.h.24.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 399 |
+
"transformer.h.24.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 400 |
+
"transformer.h.24.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 401 |
+
"transformer.h.24.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 402 |
+
"transformer.h.24.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 403 |
+
"transformer.h.24.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 404 |
+
"transformer.h.24.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 405 |
+
"transformer.h.24.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 406 |
+
"transformer.h.24.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 407 |
+
"transformer.h.25.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 408 |
+
"transformer.h.25.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 409 |
+
"transformer.h.25.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 410 |
+
"transformer.h.25.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 411 |
+
"transformer.h.25.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 412 |
+
"transformer.h.25.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 413 |
+
"transformer.h.25.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 414 |
+
"transformer.h.25.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 415 |
+
"transformer.h.25.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 416 |
+
"transformer.h.25.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 417 |
+
"transformer.h.25.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 418 |
+
"transformer.h.25.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 419 |
+
"transformer.h.25.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 420 |
+
"transformer.h.25.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 421 |
+
"transformer.h.25.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 422 |
+
"transformer.h.25.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 423 |
+
"transformer.h.26.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 424 |
+
"transformer.h.26.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 425 |
+
"transformer.h.26.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 426 |
+
"transformer.h.26.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 427 |
+
"transformer.h.26.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 428 |
+
"transformer.h.26.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 429 |
+
"transformer.h.26.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 430 |
+
"transformer.h.26.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 431 |
+
"transformer.h.26.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 432 |
+
"transformer.h.26.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 433 |
+
"transformer.h.26.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 434 |
+
"transformer.h.26.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 435 |
+
"transformer.h.26.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 436 |
+
"transformer.h.26.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 437 |
+
"transformer.h.26.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 438 |
+
"transformer.h.26.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 439 |
+
"transformer.h.27.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 440 |
+
"transformer.h.27.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 441 |
+
"transformer.h.27.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 442 |
+
"transformer.h.27.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 443 |
+
"transformer.h.27.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 444 |
+
"transformer.h.27.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 445 |
+
"transformer.h.27.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 446 |
+
"transformer.h.27.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 447 |
+
"transformer.h.27.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 448 |
+
"transformer.h.27.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 449 |
+
"transformer.h.27.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 450 |
+
"transformer.h.27.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 451 |
+
"transformer.h.27.mlp.c_fc2.weight": "pytorch_model-00003-of-00004.bin",
|
| 452 |
+
"transformer.h.27.mlp.c_fc2.bias": "pytorch_model-00003-of-00004.bin",
|
| 453 |
+
"transformer.h.27.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 454 |
+
"transformer.h.27.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 455 |
+
"transformer.h.28.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
|
| 456 |
+
"transformer.h.28.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 457 |
+
"transformer.h.28.attn.bias": "pytorch_model-00003-of-00004.bin",
|
| 458 |
+
"transformer.h.28.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
|
| 459 |
+
"transformer.h.28.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 460 |
+
"transformer.h.28.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
|
| 461 |
+
"transformer.h.28.ln_1.weight": "pytorch_model-00003-of-00004.bin",
|
| 462 |
+
"transformer.h.28.ln_1.bias": "pytorch_model-00003-of-00004.bin",
|
| 463 |
+
"transformer.h.28.ln_2.weight": "pytorch_model-00003-of-00004.bin",
|
| 464 |
+
"transformer.h.28.ln_2.bias": "pytorch_model-00003-of-00004.bin",
|
| 465 |
+
"transformer.h.28.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
|
| 466 |
+
"transformer.h.28.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
|
| 467 |
+
"transformer.h.28.mlp.c_fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 468 |
+
"transformer.h.28.mlp.c_fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 469 |
+
"transformer.h.28.mlp.c_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 470 |
+
"transformer.h.28.mlp.c_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 471 |
+
"transformer.h.29.attn.c_attn.weight": "pytorch_model-00004-of-00004.bin",
|
| 472 |
+
"transformer.h.29.attn.c_attn.bias": "pytorch_model-00004-of-00004.bin",
|
| 473 |
+
"transformer.h.29.attn.bias": "pytorch_model-00004-of-00004.bin",
|
| 474 |
+
"transformer.h.29.attn.masked_bias": "pytorch_model-00004-of-00004.bin",
|
| 475 |
+
"transformer.h.29.attn.c_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 476 |
+
"transformer.h.29.attn.c_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 477 |
+
"transformer.h.29.ln_1.weight": "pytorch_model-00004-of-00004.bin",
|
| 478 |
+
"transformer.h.29.ln_1.bias": "pytorch_model-00004-of-00004.bin",
|
| 479 |
+
"transformer.h.29.ln_2.weight": "pytorch_model-00004-of-00004.bin",
|
| 480 |
+
"transformer.h.29.ln_2.bias": "pytorch_model-00004-of-00004.bin",
|
| 481 |
+
"transformer.h.29.mlp.c_fc.weight": "pytorch_model-00004-of-00004.bin",
|
| 482 |
+
"transformer.h.29.mlp.c_fc.bias": "pytorch_model-00004-of-00004.bin",
|
| 483 |
+
"transformer.h.29.mlp.c_fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 484 |
+
"transformer.h.29.mlp.c_fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 485 |
+
"transformer.h.29.mlp.c_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 486 |
+
"transformer.h.29.mlp.c_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 487 |
+
"transformer.h.30.attn.c_attn.weight": "pytorch_model-00004-of-00004.bin",
|
| 488 |
+
"transformer.h.30.attn.c_attn.bias": "pytorch_model-00004-of-00004.bin",
|
| 489 |
+
"transformer.h.30.attn.bias": "pytorch_model-00004-of-00004.bin",
|
| 490 |
+
"transformer.h.30.attn.masked_bias": "pytorch_model-00004-of-00004.bin",
|
| 491 |
+
"transformer.h.30.attn.c_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 492 |
+
"transformer.h.30.attn.c_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 493 |
+
"transformer.h.30.ln_1.weight": "pytorch_model-00004-of-00004.bin",
|
| 494 |
+
"transformer.h.30.ln_1.bias": "pytorch_model-00004-of-00004.bin",
|
| 495 |
+
"transformer.h.30.ln_2.weight": "pytorch_model-00004-of-00004.bin",
|
| 496 |
+
"transformer.h.30.ln_2.bias": "pytorch_model-00004-of-00004.bin",
|
| 497 |
+
"transformer.h.30.mlp.c_fc.weight": "pytorch_model-00004-of-00004.bin",
|
| 498 |
+
"transformer.h.30.mlp.c_fc.bias": "pytorch_model-00004-of-00004.bin",
|
| 499 |
+
"transformer.h.30.mlp.c_fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 500 |
+
"transformer.h.30.mlp.c_fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 501 |
+
"transformer.h.30.mlp.c_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 502 |
+
"transformer.h.30.mlp.c_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 503 |
+
"transformer.h.31.attn.c_attn.weight": "pytorch_model-00004-of-00004.bin",
|
| 504 |
+
"transformer.h.31.attn.c_attn.bias": "pytorch_model-00004-of-00004.bin",
|
| 505 |
+
"transformer.h.31.attn.bias": "pytorch_model-00004-of-00004.bin",
|
| 506 |
+
"transformer.h.31.attn.masked_bias": "pytorch_model-00004-of-00004.bin",
|
| 507 |
+
"transformer.h.31.attn.c_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 508 |
+
"transformer.h.31.attn.c_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 509 |
+
"transformer.h.31.ln_1.weight": "pytorch_model-00004-of-00004.bin",
|
| 510 |
+
"transformer.h.31.ln_1.bias": "pytorch_model-00004-of-00004.bin",
|
| 511 |
+
"transformer.h.31.ln_2.weight": "pytorch_model-00004-of-00004.bin",
|
| 512 |
+
"transformer.h.31.ln_2.bias": "pytorch_model-00004-of-00004.bin",
|
| 513 |
+
"transformer.h.31.mlp.c_fc.weight": "pytorch_model-00004-of-00004.bin",
|
| 514 |
+
"transformer.h.31.mlp.c_fc.bias": "pytorch_model-00004-of-00004.bin",
|
| 515 |
+
"transformer.h.31.mlp.c_fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 516 |
+
"transformer.h.31.mlp.c_fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 517 |
+
"transformer.h.31.mlp.c_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 518 |
+
"transformer.h.31.mlp.c_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 519 |
+
"transformer.ln_f.weight": "pytorch_model-00004-of-00004.bin",
|
| 520 |
+
"transformer.ln_f.bias": "pytorch_model-00004-of-00004.bin",
|
| 521 |
+
"lm_head.weight": "pytorch_model-00004-of-00004.bin"
|
| 522 |
+
}
|
| 523 |
+
}
|
register_crystalcoder.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 3 |
+
from configuration_crystalcoder import CrystalCoderConfig
|
| 4 |
+
from modeling_crystalcoder import CrystalCoderModel, CrystalCoderLMHeadModel
|
| 5 |
+
|
| 6 |
+
AutoConfig.register("crystalcoder", CrystalCoderConfig)
|
| 7 |
+
AutoModel.register(CrystalCoderConfig, CrystalCoderModel)
|
| 8 |
+
AutoModelForCausalLM.register(CrystalCoderConfig, CrystalCoderLMHeadModel)
|
| 9 |
+
AutoTokenizer.register(CrystalCoderConfig, fast_tokenizer_class=PreTrainedTokenizerFast)
|
tokenization_crystalcoder_fast.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
from shutil import copyfile
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
from tokenizers import processors
|
| 7 |
+
|
| 8 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 9 |
+
from transformers.utils import is_sentencepiece_available, logging
|
| 10 |
+
from transformers.utils.versions import require_version
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
require_version("tokenizers>=0.13.3")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
|
| 19 |
+
|
| 20 |
+
# fmt: off
|
| 21 |
+
DEFAULT_SYSTEM_PROMPT = """You are CrystalCoder, a helpful and intelligent assistant. Follow the instructions and answer the questions as accurately as possible."""
|
| 22 |
+
# fmt: on
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class CrystalCoderTokenizerFast(PreTrainedTokenizerFast):
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 29 |
+
slow_tokenizer_class = None
|
| 30 |
+
padding_side = "left"
|
| 31 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
vocab_file=None,
|
| 36 |
+
tokenizer_file=None,
|
| 37 |
+
clean_up_tokenization_spaces=False,
|
| 38 |
+
unk_token="<|unk|>",
|
| 39 |
+
bos_token="<|startoftext|>",
|
| 40 |
+
eos_token="<|endoftext|>",
|
| 41 |
+
add_bos_token=False,
|
| 42 |
+
add_eos_token=False,
|
| 43 |
+
use_default_system_prompt=False,
|
| 44 |
+
**kwargs,
|
| 45 |
+
):
|
| 46 |
+
super().__init__(
|
| 47 |
+
vocab_file=vocab_file,
|
| 48 |
+
tokenizer_file=tokenizer_file,
|
| 49 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 50 |
+
unk_token=unk_token,
|
| 51 |
+
bos_token=bos_token,
|
| 52 |
+
eos_token=eos_token,
|
| 53 |
+
use_default_system_prompt=use_default_system_prompt,
|
| 54 |
+
**kwargs,
|
| 55 |
+
)
|
| 56 |
+
self._add_bos_token = add_bos_token
|
| 57 |
+
self._add_eos_token = add_eos_token
|
| 58 |
+
self.update_post_processor()
|
| 59 |
+
self.use_default_system_prompt = use_default_system_prompt
|
| 60 |
+
self.vocab_file = vocab_file
|
| 61 |
+
|
| 62 |
+
@property
|
| 63 |
+
def can_save_slow_tokenizer(self) -> bool:
|
| 64 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
| 65 |
+
|
| 66 |
+
def update_post_processor(self):
|
| 67 |
+
"""
|
| 68 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
| 69 |
+
"""
|
| 70 |
+
bos = self.bos_token
|
| 71 |
+
bos_token_id = self.bos_token_id
|
| 72 |
+
if bos is None and self.add_bos_token:
|
| 73 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
| 74 |
+
|
| 75 |
+
eos = self.eos_token
|
| 76 |
+
eos_token_id = self.eos_token_id
|
| 77 |
+
if eos is None and self.add_eos_token:
|
| 78 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
| 79 |
+
|
| 80 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
| 81 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
| 82 |
+
|
| 83 |
+
special_tokens = []
|
| 84 |
+
if self.add_bos_token:
|
| 85 |
+
special_tokens.append((bos, bos_token_id))
|
| 86 |
+
if self.add_eos_token:
|
| 87 |
+
special_tokens.append((eos, eos_token_id))
|
| 88 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
| 89 |
+
single=single, pair=pair, special_tokens=special_tokens
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
@property
|
| 93 |
+
def add_eos_token(self):
|
| 94 |
+
return self._add_eos_token
|
| 95 |
+
|
| 96 |
+
@property
|
| 97 |
+
def add_bos_token(self):
|
| 98 |
+
return self._add_bos_token
|
| 99 |
+
|
| 100 |
+
@add_eos_token.setter
|
| 101 |
+
def add_eos_token(self, value):
|
| 102 |
+
self._add_eos_token = value
|
| 103 |
+
self.update_post_processor()
|
| 104 |
+
|
| 105 |
+
@add_bos_token.setter
|
| 106 |
+
def add_bos_token(self, value):
|
| 107 |
+
self._add_bos_token = value
|
| 108 |
+
self.update_post_processor()
|
| 109 |
+
|
| 110 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 111 |
+
if not self.can_save_slow_tokenizer:
|
| 112 |
+
raise ValueError(
|
| 113 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
| 114 |
+
"tokenizer."
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if not os.path.isdir(save_directory):
|
| 118 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 119 |
+
return
|
| 120 |
+
out_vocab_file = os.path.join(
|
| 121 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
| 125 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 126 |
+
|
| 127 |
+
return (out_vocab_file,)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 131 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 132 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 133 |
+
|
| 134 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
| 135 |
+
|
| 136 |
+
if token_ids_1 is not None:
|
| 137 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
| 138 |
+
|
| 139 |
+
return output
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<unk>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<s>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"32000": {
|
| 28 |
+
"content": "<|fim_prefix|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"32001": {
|
| 36 |
+
"content": "<|fim_middle|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"32002": {
|
| 44 |
+
"content": "<|fim_suffix|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"32003": {
|
| 52 |
+
"content": "<|fim_pad|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"32004": {
|
| 60 |
+
"content": "<|filename|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"32005": {
|
| 68 |
+
"content": "<|gh_stars|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"32006": {
|
| 76 |
+
"content": "<|issue_start|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"32007": {
|
| 84 |
+
"content": "<|issue_comment|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"32008": {
|
| 92 |
+
"content": "<|issue_closed|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"32009": {
|
| 100 |
+
"content": "<|jupyter_start|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"32010": {
|
| 108 |
+
"content": "<|jupyter_text|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"32011": {
|
| 116 |
+
"content": "<|jupyter_code|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"32012": {
|
| 124 |
+
"content": "<|jupyter_output|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"32013": {
|
| 132 |
+
"content": "<|empty_output|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"32014": {
|
| 140 |
+
"content": "<|commit_before|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"32015": {
|
| 148 |
+
"content": "<|commit_msg|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"32016": {
|
| 156 |
+
"content": "<|commit_after|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"32017": {
|
| 164 |
+
"content": "<|reponame|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"32018": {
|
| 172 |
+
"content": "<|im_start|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"32019": {
|
| 180 |
+
"content": "<|im_end|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"32020": {
|
| 188 |
+
"content": "<|sys_start|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"32021": {
|
| 196 |
+
"content": "<|sys_end|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
}
|
| 203 |
+
},
|
| 204 |
+
"additional_special_tokens": [
|
| 205 |
+
"<|fim_prefix|>",
|
| 206 |
+
"<|fim_middle|>",
|
| 207 |
+
"<|fim_suffix|>",
|
| 208 |
+
"<|fim_pad|>",
|
| 209 |
+
"<|filename|>",
|
| 210 |
+
"<|gh_stars|>",
|
| 211 |
+
"<|issue_start|>",
|
| 212 |
+
"<|issue_comment|>",
|
| 213 |
+
"<|issue_closed|>",
|
| 214 |
+
"<|jupyter_start|>",
|
| 215 |
+
"<|jupyter_text|>",
|
| 216 |
+
"<|jupyter_code|>",
|
| 217 |
+
"<|jupyter_output|>",
|
| 218 |
+
"<|empty_output|>",
|
| 219 |
+
"<|commit_before|>",
|
| 220 |
+
"<|commit_msg|>",
|
| 221 |
+
"<|commit_after|>",
|
| 222 |
+
"<|reponame|>",
|
| 223 |
+
"<|im_start|>",
|
| 224 |
+
"<|im_end|>",
|
| 225 |
+
"<|sys_start|>",
|
| 226 |
+
"<|sys_end|>"
|
| 227 |
+
],
|
| 228 |
+
"bos_token": "<s>",
|
| 229 |
+
"clean_up_tokenization_spaces": false,
|
| 230 |
+
"eos_token": "</s>",
|
| 231 |
+
"legacy": false,
|
| 232 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 233 |
+
"pad_token": null,
|
| 234 |
+
"padding_side": "right",
|
| 235 |
+
"sp_model_kwargs": {},
|
| 236 |
+
"auto_map": {
|
| 237 |
+
"AutoTokenizer": [
|
| 238 |
+
null,
|
| 239 |
+
"tokenization_crystalcoder_fast.CrystalCoderTokenizerFast"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
"tokenizer_class": "CrystalCoderTokenizer",
|
| 243 |
+
"unk_token": "<unk>",
|
| 244 |
+
"use_default_system_prompt": false
|
| 245 |
+
}
|