File size: 11,460 Bytes
287a683 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from functools import wraps
from math import log, pi
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
from torch import einsum, nn
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cache_fn(f):
cache = dict()
@wraps(f)
def cached_fn(*args, _cache=True, key=None, **kwargs):
if not _cache:
return f(*args, **kwargs)
nonlocal cache
if key in cache:
return cache[key]
result = f(*args, **kwargs)
cache[key] = result
return result
return cached_fn
def fourier_encode(x, max_freq, num_bands=4):
x = x.unsqueeze(-1)
device, dtype, orig_x = x.device, x.dtype, x
scales = torch.linspace(1.0, max_freq / 2, num_bands, device=device, dtype=dtype)
scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)]
x = x * scales * pi
x = torch.cat([x.sin(), x.cos()], dim=-1)
x = torch.cat((x, orig_x), dim=-1)
return x
class PreNorm(nn.Module):
def __init__(self, dim, fn, context_dim=None):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm(dim)
self.norm_context = nn.LayerNorm(context_dim) if exists(context_dim) else None
def forward(self, x, **kwargs):
x = self.norm(x)
if exists(self.norm_context):
context = kwargs["context"]
normed_context = self.norm_context(context)
kwargs.update(context=normed_context)
return self.fn(x, **kwargs)
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim=-1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, mult=4, dropout=0.0):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Linear(dim * mult, dim),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head**-0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias=False)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Linear(inner_dim, query_dim)
def forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k, v = self.to_kv(context).chunk(2, dim=-1)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
if exists(mask):
mask = rearrange(mask, "b ... -> b (...)")
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, "b j -> (b h) () j", h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
attn = self.dropout(attn)
out = einsum("b i j, b j d -> b i d", attn, v)
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
return self.to_out(out)
class Perceiver(nn.Module):
def __init__(
self,
*,
num_freq_bands,
depth,
max_freq,
input_channels=3,
input_axis=2,
num_latents=512,
latent_dim=512,
cross_heads=1,
latent_heads=8,
cross_dim_head=64,
latent_dim_head=64,
num_classes=1000,
attn_dropout=0.0,
ff_dropout=0.0,
weight_tie_layers=False,
fourier_encode_data=True,
self_per_cross_attn=1,
final_classifier_head=True,
pool="mean",
latent_init=None,
):
"""The shape of the final attention mechanism will be:
depth * (cross attention -> self_per_cross_attn * self attention)
Args:
num_freq_bands: Number of freq bands, with original value (2 * K + 1)
depth: Depth of net.
max_freq: Maximum frequency, hyperparameter depending on how
fine the data is.
freq_base: Base for the frequency
input_channels: Number of channels for each token of the input.
input_axis: Number of axes for input data (2 for images, 3 for video)
num_latents: Number of latents, or induced set points, or centroids.
Different papers giving it different names.
latent_dim: Latent dimension.
cross_heads: Number of heads for cross attention. Paper said 1.
latent_heads: Number of heads for latent self attention, 8.
cross_dim_head: Number of dimensions per cross attention head.
latent_dim_head: Number of dimensions per latent self attention head.
num_classes: Output number of classes.
attn_dropout: Attention dropout
ff_dropout: Feedforward dropout
weight_tie_layers: Whether to weight tie layers (optional).
fourier_encode_data: Whether to auto-fourier encode the data, using
the input_axis given. defaults to True, but can be turned off
if you are fourier encoding the data yourself.
self_per_cross_attn: Number of self attention blocks per cross attn.
final_classifier_head: mean pool and project embeddings to number of classes (num_classes) at the end
"""
super().__init__()
self.input_axis = input_axis
self.max_freq = max_freq
self.num_freq_bands = num_freq_bands
self.self_per_cross_attn = self_per_cross_attn
self.fourier_encode_data = fourier_encode_data
fourier_channels = (
(input_axis * ((num_freq_bands * 2) + 1)) * 2 if fourier_encode_data else 0
)
input_dim = fourier_channels + input_channels
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
if latent_init is not None:
latent_init_feat = torch.load(latent_init)
if type(latent_init_feat) != torch.Tensor:
latent_init_feat = torch.Tensor(latent_init_feat)
if len(latent_init_feat.shape) == 3:
latent_init_feat = latent_init_feat[0]
with torch.no_grad():
self.latents.copy_(latent_init_feat)
print(f"load latent feature: , {latent_init}")
get_cross_attn = lambda: PreNorm(
latent_dim,
Attention(
latent_dim,
input_dim,
heads=cross_heads,
dim_head=cross_dim_head,
dropout=attn_dropout,
),
context_dim=input_dim,
)
get_cross_ff = lambda: PreNorm(
latent_dim, FeedForward(latent_dim, dropout=ff_dropout)
)
get_latent_attn = lambda: PreNorm(
latent_dim,
Attention(
latent_dim,
heads=latent_heads,
dim_head=latent_dim_head,
dropout=attn_dropout,
),
)
get_latent_ff = lambda: PreNorm(
latent_dim, FeedForward(latent_dim, dropout=ff_dropout)
)
get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff = map(
cache_fn, (get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff)
)
self.layers = nn.ModuleList([])
for i in range(depth):
should_cache = i > 0 and weight_tie_layers
cache_args = {"_cache": should_cache}
self_attns = nn.ModuleList([])
for block_ind in range(self_per_cross_attn):
self_attns.append(
nn.ModuleList(
[
get_latent_attn(**cache_args, key=block_ind),
get_latent_ff(**cache_args, key=block_ind),
]
)
)
if self_per_cross_attn == 0:
self_attns.append(get_latent_ff(**cache_args, key=block_ind))
self.layers.append(
nn.ModuleList(
[
get_cross_attn(**cache_args),
get_cross_ff(**cache_args),
self_attns,
]
)
)
if final_classifier_head:
if pool == "cat":
self.to_logits = nn.Sequential(
Rearrange("b n d -> b (n d)"),
nn.LayerNorm(num_latents * latent_dim),
nn.Linear(num_latents * latent_dim, num_classes),
)
elif pool == "mlp":
self.to_logits = nn.Sequential(
Reduce("b n d -> b d", "mean"),
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, latent_dim),
nn.ReLU(),
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, num_classes),
)
else:
self.to_logits = nn.Sequential(
Reduce("b n d -> b d", pool),
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, num_classes),
)
def forward(self, h, label=None, mask=None, pretrain=False, coords=None):
b, *axis, _, device, dtype = *h.shape, h.device, h.dtype
assert (
len(axis) == self.input_axis
), "input data must have the right number of axis"
if self.fourier_encode_data:
# calculate fourier encoded positions in the range of [-1, 1], for all axis
# axis_pos = list(map(lambda size: torch.linspace(-1., 1., steps=size, device=device, dtype=dtype), axis))
# pos = torch.stack(torch.meshgrid(*axis_pos, indexing = 'ij'), dim = -1)
# enc_pos = fourier_encode(pos, self.max_freq, self.num_freq_bands)
# enc_pos = rearrange(enc_pos, '... n d -> ... (n d)')
# enc_pos = repeat(enc_pos, '... -> b ...', b = b)
enc_pos = fourier_encode(coords, self.max_freq, self.num_freq_bands)
enc_pos = rearrange(enc_pos, "... n d -> ... (n d)")
h = torch.cat((h, enc_pos), dim=-1)
# concat to channels of data and flatten axis
h = rearrange(h, "b ... d -> b (...) d")
x = repeat(self.latents, "n d -> b n d", b=b)
# layers
for cross_attn, cross_ff, self_attns in self.layers:
x = cross_attn(x, context=h, mask=mask) + x
x = cross_ff(x) + x
if self.self_per_cross_attn > 0:
for self_attn, self_ff in self_attns:
x = self_attn(x) + x
x = self_ff(x) + x
else:
x = self_attns[0](x) + x
# allow for fetching embeddings
if pretrain:
return x.mean(dim=1)
# to logits
logits = self.to_logits(x)
Y_hat = torch.topk(logits, 1, dim=1)[1]
Y_prob = F.softmax(logits, dim=1)
return logits, Y_prob, Y_hat
|