Text-to-Speech
ONNX
zero-shot
multilingual
Approximetal nielsr HF Staff commited on
Commit
0125ea2
·
verified ·
1 Parent(s): 8770f4f

Improve model card: add project page, tags, and detailed description (#1)

Browse files

- Improve model card: add project page, tags, and detailed description (595e6d93c84186057661095c541d4ec107070fc6)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +34 -22
README.md CHANGED
@@ -1,5 +1,7 @@
1
  ---
2
- license: cc-by-nc-4.0
 
 
3
  language:
4
  - it
5
  - pt
@@ -11,37 +13,47 @@ language:
11
  - ru
12
  - en
13
  - zh
14
- task_categories:
15
- - text-to-speech
16
- datasets:
17
- - LEMAS-Project/LEMAS-Dataset-train
18
- - LEMAS-Project/LEMAS-Dataset-eval
19
  pipeline_tag: text-to-speech
 
 
 
20
  ---
21
 
22
- ## Overview
 
 
23
 
24
- LEMAS‑TTS is a multilingual zero‑shot text‑to‑speech system, supporting 10 languages:
 
 
 
25
 
26
- - Chinese
27
- - English
28
- - Spanish
29
- - Russian
30
- - French
31
- - German
32
- - Italian
33
- - Portuguese
34
- - Indonesian
35
- - Vietnamese
36
 
37
- You can try the model via our Hugging Face demo: [https://huggingface.co/spaces/LEMAS-Project/LEMAS-TTS](https://huggingface.co/spaces/LEMAS-Project/LEMAS-TTS)
38
 
39
- For more details, please visit our GitHub repository: ([https://github.com/LEMAS-Project/LEMAS-TTS](https://github.com/LEMAS-Project/LEMAS-TTS))
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ## Citation
43
- [https://arxiv.org/abs/2601.04233](https://arxiv.org/abs/2601.04233)
44
- ```
45
  @article{zhao2026lemas,
46
  title={LEMAS: A 150K-Hour Large-scale Extensible Multilingual Audio Suite with Generative Speech Models},
47
  author={Zhao, Zhiyuan and Lin, Lijian and Zhu, Ye and Xie, Kai and Liu, Yunfei and Li, Yu},
 
1
  ---
2
+ datasets:
3
+ - LEMAS-Project/LEMAS-Dataset-train
4
+ - LEMAS-Project/LEMAS-Dataset-eval
5
  language:
6
  - it
7
  - pt
 
13
  - ru
14
  - en
15
  - zh
16
+ license: cc-by-nc-4.0
 
 
 
 
17
  pipeline_tag: text-to-speech
18
+ tags:
19
+ - zero-shot
20
+ - multilingual
21
  ---
22
 
23
+ # LEMAS-TTS
24
+
25
+ LEMAS-TTS is a multilingual zero-shot text-to-speech system, presented in the paper [LEMAS: A 150K-Hour Large-scale Extensible Multilingual Audio Suite with Generative Speech Models](https://huggingface.co/papers/2601.04233).
26
 
27
+ - **Project Page:** [https://lemas-project.github.io/LEMAS-Project](https://lemas-project.github.io/LEMAS-Project)
28
+ - **Paper:** [https://arxiv.org/abs/2601.04233](https://arxiv.org/abs/2601.04233)
29
+ - **GitHub Repository:** [https://github.com/LEMAS-Project/LEMAS-TTS](https://github.com/LEMAS-Project/LEMAS-TTS)
30
+ - **Hugging Face Demo:** [https://huggingface.co/spaces/LEMAS-Project/LEMAS-TTS](https://huggingface.co/spaces/LEMAS-Project/LEMAS-TTS)
31
 
32
+ ## Model Description
 
 
 
 
 
 
 
 
 
33
 
34
+ LEMAS-TTS is built upon a non-autoregressive flow-matching framework. It leverages the massive scale and linguistic diversity of the LEMAS-Dataset to achieve robust zero-shot multilingual synthesis. The model incorporates accent-adversarial training and CTC loss to mitigate cross-lingual accent issues, enhancing synthesis stability and quality across diverse languages.
35
 
36
+ ## Supported Languages
37
 
38
+ The model supports 10 major languages for zero-shot synthesis:
39
+ - Chinese (zh)
40
+ - English (en)
41
+ - Spanish (es)
42
+ - Russian (ru)
43
+ - French (fr)
44
+ - German (de)
45
+ - Italian (it)
46
+ - Portuguese (pt)
47
+ - Indonesian (id)
48
+ - Vietnamese (vi)
49
+
50
+ ## Training Data
51
+
52
+ LEMAS-TTS was trained on the [LEMAS-Dataset](https://huggingface.co/datasets/LEMAS-Project/LEMAS-Dataset-train), which is, to our knowledge, currently the largest open-source multilingual speech corpus with word-level timestamps. It covers over 150,000 hours across 10 major languages.
53
 
54
  ## Citation
55
+
56
+ ```bibtex
57
  @article{zhao2026lemas,
58
  title={LEMAS: A 150K-Hour Large-scale Extensible Multilingual Audio Suite with Generative Speech Models},
59
  author={Zhao, Zhiyuan and Lin, Lijian and Zhu, Ye and Xie, Kai and Liu, Yunfei and Li, Yu},