Update README.md
Browse files
README.md
CHANGED
@@ -57,56 +57,3 @@ print(f"Предсказанный класс: {predicted_class}")
|
|
57 |
|
58 |
|
59 |
|
60 |
-
---
|
61 |
-
|
62 |
-
### English Version:
|
63 |
-
|
64 |
-
```markdown
|
65 |
-
---
|
66 |
-
library_name: transformers
|
67 |
-
tags: [emotion-detection, sentiment-analysis, lightweight]
|
68 |
-
---
|
69 |
-
|
70 |
-
# Kostya165/rubert_emotion_slicer
|
71 |
-
|
72 |
-
This is a fine-tuned version of the `blanchefort/rubert-base-cased-sentiment` model designed for emotion and sentiment analysis. The model recognizes five emotion classes: aggression, anxiety, sarcasm, positive, and neutral.
|
73 |
-
|
74 |
-
---
|
75 |
-
|
76 |
-
## Model Details
|
77 |
-
|
78 |
-
- **Developed by:** Kostya165
|
79 |
-
- **Model type:** BERT-based sequence classification
|
80 |
-
- **Language:** Russian
|
81 |
-
- **Finetuned from:** blanchefort/rubert-base-cased-sentiment
|
82 |
-
|
83 |
-
---
|
84 |
-
|
85 |
-
## Uses
|
86 |
-
|
87 |
-
### Direct Use
|
88 |
-
|
89 |
-
The model can be used for sentiment and emotion analysis in Russian-language texts, such as chat messages, comments, or reviews.
|
90 |
-
|
91 |
-
### Out-of-Scope Use
|
92 |
-
|
93 |
-
The model is not intended for analyzing texts in other languages or for determining complex emotional states beyond the five defined categories.
|
94 |
-
|
95 |
-
---
|
96 |
-
|
97 |
-
## How to Get Started
|
98 |
-
|
99 |
-
To load and use the model, use the following code:
|
100 |
-
|
101 |
-
```python
|
102 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
103 |
-
|
104 |
-
model_name = "Kostya165/rubert_emotion_slicer"
|
105 |
-
tokenizer = BertTokenizer.from_pretrained(model_name)
|
106 |
-
model = BertForSequenceClassification.from_pretrained(model_name)
|
107 |
-
|
108 |
-
text = "Мне очень понравилось!"
|
109 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
110 |
-
outputs = model(**inputs)
|
111 |
-
predicted_class = outputs.logits.argmax(dim=-1).item()
|
112 |
-
print(f"Predicted class: {predicted_class}")
|
|
|
57 |
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|