To load and initialize the `Generator` model from the repository, follow these steps: 1. **Install Required Packages**: Ensure you have the necessary Python packages installed: ```python pip install torch omegaconf huggingface_hub ``` 2. **Download Model Files**: Retrieve the `generator.pth`, `config.json`, and `model.py` files from the Hugging Face repository. You can use the `huggingface_hub` library for this: ```python from huggingface_hub import hf_hub_download repo_id = "Kiwinicki/sat2map-generator" generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth") config_path = hf_hub_download(repo_id=repo_id, filename="config.json") model_path = hf_hub_download(repo_id=repo_id, filename="model.py") ``` 3. **Load the Model**: Incorporate the downloaded `model.py` to define the `Generator` class, then load the model's state dictionary and configuration: ```python import torch import json from omegaconf import OmegaConf import sys from pathlib import Path from model import Generator # Load configuration with open(config_path, "r") as f: config_dict = json.load(f) cfg = OmegaConf.create(config_dict) # Initialize and load the generator model generator = Generator(cfg) generator.load_state_dict(torch.load(generator_path)) generator.eval() x = torch.randn([1, cfg['channels'], 256, 256]) out = generator(x) ``` Here, `generator` is the initialized model ready for inference.