Kittitouch commited on
Commit
40a58d1
·
1 Parent(s): b18fe8c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 227.63 +/- 66.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f885bf15e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f885bf15ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f885bf15f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f885bf16040>", "_build": "<function ActorCriticPolicy._build at 0x7f885bf160d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f885bf16160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f885bf161f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f885bf16280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f885bf16310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f885bf163a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f885bf16430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f885bf164c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f885bf17340>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678329806010373446, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFBZVr5sdus8rb/zulWKszlINYW+Qqc2OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8zy4OyuzcUCUhpRSlIwBbJRNagGMAXSUR0CiCiJ+tr9EdX2UKGgGaAloD0MIxM9/D15ocUCUhpRSlGgVTfABaBZHQKINUSpR4yJ1fZQoaAZoCWgPQwjZJhWNtapsQJSGlFKUaBVNRgFoFkdAog7QbXHzYnV9lChoBmgJaA9DCCzVBbwMm3BAlIaUUpRoFU19AWgWR0CiEH1m8M/hdX2UKGgGaAloD0MIT1q4rEKQb0CUhpRSlGgVTdgBaBZHQKITPrIHTql1fZQoaAZoCWgPQwjv5qkOOT9rQJSGlFKUaBVNYwFoFkdAohRvr6ciGHV9lChoBmgJaA9DCM2tEFbjjGxAlIaUUpRoFU07AWgWR0CiFWlVLi++dX2UKGgGaAloD0MIQIS4cvZeb0CUhpRSlGgVTcABaBZHQKIXmrf+CK91fZQoaAZoCWgPQwi5N79hotkiQJSGlFKUaBVNGwFoFkdAohhkRtgrpnV9lChoBmgJaA9DCMMpc/MN52xAlIaUUpRoFU2LAWgWR0CiGkmL1mJ4dX2UKGgGaAloD0MIc7hWe9h7bUCUhpRSlGgVTdsBaBZHQKIcfpHI6sB1fZQoaAZoCWgPQwjZtb3dkghvQJSGlFKUaBVNfAFoFkdAoh43jsD4g3V9lChoBmgJaA9DCK/MW3UdcW1AlIaUUpRoFU2gAWgWR0CiIQbyQPqcdX2UKGgGaAloD0MIXU4JiMn2b0CUhpRSlGgVTWwBaBZHQKIimB4lhPV1fZQoaAZoCWgPQwiMLm8OVxdxQJSGlFKUaBVNsgFoFkdAoiTF8Aq/d3V9lChoBmgJaA9DCAfSxaYVZ3FAlIaUUpRoFU3WAWgWR0CiJoCLMs6JdX2UKGgGaAloD0MI5ulcUYpscECUhpRSlGgVTT8BaBZHQKInxU/fO2R1fZQoaAZoCWgPQwhavFgYou1sQJSGlFKUaBVNWwFoFkdAoioM+eOGTXV9lChoBmgJaA9DCPj/ccKE63BAlIaUUpRoFU2nAWgWR0CiLBxMnJDFdX2UKGgGaAloD0MIb/YHyu2zbkCUhpRSlGgVTXwBaBZHQKIt3g88s+V1fZQoaAZoCWgPQwidSgaAKndsQJSGlFKUaBVNswFoFkdAojBpDst03nV9lChoBmgJaA9DCHO8AtETpGRAlIaUUpRoFU3oA2gWR0CiNGphnanKdX2UKGgGaAloD0MI527XS9OOa0CUhpRSlGgVTUwBaBZHQKI1flNDc/N1fZQoaAZoCWgPQwgPSMK+nYRuQJSGlFKUaBVNfAFoFkdAojdQRsdkrnV9lChoBmgJaA9DCPp8lBEXwnBAlIaUUpRoFU1LAWgWR0CiOGE0zj3mdX2UKGgGaAloD0MIWKoLeBmBbkCUhpRSlGgVTTIBaBZHQKI5T5tWMjx1fZQoaAZoCWgPQwh+dOrKp1dwQJSGlFKUaBVNzgFoFkdAojtKy4Wk8HV9lChoBmgJaA9DCEijAifbfm5AlIaUUpRoFU23AWgWR0CiPNwhGH58dX2UKGgGaAloD0MICaUvhNyGcUCUhpRSlGgVTbcBaBZHQKI/D4bjtHB1fZQoaAZoCWgPQwiNmq+Sj1tvQJSGlFKUaBVNswFoFkdAokBv6l+Ey3V9lChoBmgJaA9DCL/VOnG5gmxAlIaUUpRoFU2WAWgWR0CiQccoYvWZdX2UKGgGaAloD0MIC/Dd5o0JcUCUhpRSlGgVTVYBaBZHQKJDhvhqCYl1fZQoaAZoCWgPQwikG2FREaRtQJSGlFKUaBVNoAFoFkdAokVlRekYXXV9lChoBmgJaA9DCJnwS/08+mpAlIaUUpRoFU19AWgWR0CiRyp/PPcBdX2UKGgGaAloD0MIVB9I3rlaYkCUhpRSlGgVTegDaBZHQKJNO7A+IM11fZQoaAZoCWgPQwioOA68ml9wQJSGlFKUaBVNugFoFkdAok9hvm5lOHV9lChoBmgJaA9DCCgLX19rVXFAlIaUUpRoFU3IAWgWR0CiUNepwS8KdX2UKGgGaAloD0MIK4pXWdvqb0CUhpRSlGgVTaUBaBZHQKJSw/O+qR51fZQoaAZoCWgPQwgpPj4hO7ltQJSGlFKUaBVNVwFoFkdAolPsSIxgzHV9lChoBmgJaA9DCA9CQL7EOnBAlIaUUpRoFU3LAWgWR0CiVZCqZML4dX2UKGgGaAloD0MI1T4dj5msbkCUhpRSlGgVTX8BaBZHQKJXm7jDKo11fZQoaAZoCWgPQwgv3LkwUsZuQJSGlFKUaBVNqQFoFkdAolkoUFjd6HV9lChoBmgJaA9DCK3boPZbWzdAlIaUUpRoFUvnaBZHQKJZzGYKIBR1fZQoaAZoCWgPQwgKE0azslhsQJSGlFKUaBVNkQFoFkdAoluuZZ0Sy3V9lChoBmgJaA9DCGmrksj+QHBAlIaUUpRoFU2uAWgWR0CiXPgTRIBjdX2UKGgGaAloD0MIGhU42QaoaUCUhpRSlGgVTaQBaBZHQKJfAgrYoRZ1fZQoaAZoCWgPQwiRKR+CKkhvQJSGlFKUaBVN4gFoFkdAomDai48U23V9lChoBmgJaA9DCLa6nBIQlmtAlIaUUpRoFU1/AWgWR0CiY2A0bcXWdX2UKGgGaAloD0MIdH0fDhJ0bUCUhpRSlGgVTWgBaBZHQKJk8d0aIep1fZQoaAZoCWgPQwjvHTUmROFwQJSGlFKUaBVNlgFoFkdAombB+6RQrXV9lChoBmgJaA9DCNQP6iIFSm9AlIaUUpRoFU2HAWgWR0CiaaXUhFEzdX2UKGgGaAloD0MICY1g4/pfcECUhpRSlGgVTT4BaBZHQKJqohcqvvB1fZQoaAZoCWgPQwhg5jv4iaFtQJSGlFKUaBVNrAFoFkdAomwNHUc4pHV9lChoBmgJaA9DCE4LXvTVQXBAlIaUUpRoFU15AWgWR0CibdKs+3YudX2UKGgGaAloD0MIBirj32cZbECUhpRSlGgVTU0BaBZHQKJu2yjYZl51fZQoaAZoCWgPQwi4rpgR3lRqQJSGlFKUaBVN9wFoFkdAonFiGHpKSXV9lChoBmgJaA9DCEGd8uhG8GtAlIaUUpRoFU1+AWgWR0CicpzJyQxOdX2UKGgGaAloD0MIzA2GOqzycECUhpRSlGgVTUsBaBZHQKJzlT0g8r91fZQoaAZoCWgPQwhrJ0pCoqtvQJSGlFKUaBVNxQFoFkdAonWTVDrquHV9lChoBmgJaA9DCO0seqeCQWpAlIaUUpRoFU3WAWgWR0Cid2HMlkYodX2UKGgGaAloD0MIbRrba0G2bkCUhpRSlGgVTbkBaBZHQKJ5ceXAuZl1fZQoaAZoCWgPQwiNtb+zPQI7QJSGlFKUaBVL8mgWR0Ciehxm9QGfdX2UKGgGaAloD0MIlUbM7HM2YkCUhpRSlGgVTegDaBZHQKJ+b1zQu291fZQoaAZoCWgPQwg1fAvrRnxtQJSGlFKUaBVNfwFoFkdAooAQcFQl8nV9lChoBmgJaA9DCFx0stS6cXBAlIaUUpRoFU22AWgWR0CigxMAeaKDdX2UKGgGaAloD0MIpfj4hCy/cECUhpRSlGgVTVoBaBZHQKKErPAO8TV1fZQoaAZoCWgPQwiCNjl8UgZvQJSGlFKUaBVNtQFoFkdAoobh7HAAQ3V9lChoBmgJaA9DCBA+lGiJAXBAlIaUUpRoFU0UA2gWR0CiilQ8wHqvdX2UKGgGaAloD0MI9goL7sd7cECUhpRSlGgVTaUBaBZHQKKMWtYB/7V1fZQoaAZoCWgPQwiOVyB6kotxQJSGlFKUaBVNTwFoFkdAoo1Z+BpYcXV9lChoBmgJaA9DCEuTUtDtJdM/lIaUUpRoFUv3aBZHQKKOCnYxtYV1fZQoaAZoCWgPQwit+fGXlmNqQJSGlFKUaBVNcQFoFkdAoo/ackMTe3V9lChoBmgJaA9DCITwaOOIJG9AlIaUUpRoFU2aAWgWR0CikSRu0kWzdX2UKGgGaAloD0MIbxEY6xuwa0CUhpRSlGgVTWIBaBZHQKKSRNZeRgZ1fZQoaAZoCWgPQwhVUbzK2htqQJSGlFKUaBVNWAFoFkdAopP2s7uDz3V9lChoBmgJaA9DCCGtMejERXFAlIaUUpRoFU3BAWgWR0CilYo3R5TqdX2UKGgGaAloD0MI/mFLj6ava0CUhpRSlGgVTakDaBZHQKKaJXEIgNh1fZQoaAZoCWgPQwichxOYzu5rQJSGlFKUaBVNagFoFkdAopt5jUd7wHV9lChoBmgJaA9DCF726043cHFAlIaUUpRoFU2vAWgWR0CinkILgGbDdX2UKGgGaAloD0MIC+9yEd92cUCUhpRSlGgVTXABaBZHQKKf28yvcJt1fZQoaAZoCWgPQwh4f7xXLf5qQJSGlFKUaBVNcwFoFkdAoqGufmLcbnV9lChoBmgJaA9DCBcQWg/fLG9AlIaUUpRoFU2tAWgWR0CipJvcafjCdX2UKGgGaAloD0MI14nL8crscECUhpRSlGgVTbEBaBZHQKKl7qk/KQt1fZQoaAZoCWgPQwhsBU1LLJ9sQJSGlFKUaBVNeQFoFkdAoqfJMajveHV9lChoBmgJaA9DCI/DYP6Kd29AlIaUUpRoFU10AWgWR0CiqRA5aNdadX2UKGgGaAloD0MI6C0e3nOKaUCUhpRSlGgVTXIBaBZHQKKqMHEdeY51fZQoaAZoCWgPQwiJfQIoRsFwQJSGlFKUaBVNaAFoFkdAoqwRv99+gHV9lChoBmgJaA9DCNo4Yi0+i2tAlIaUUpRoFU2mAWgWR0CirZQq7ROUdX2UKGgGaAloD0MI1jkGZK9wcECUhpRSlGgVTZsBaBZHQKKvb7b+Lm91fZQoaAZoCWgPQwgyWHGqtUtwQJSGlFKUaBVNVwFoFkdAorCAiV0LdHV9lChoBmgJaA9DCOdQhqoYRW9AlIaUUpRoFU1vAWgWR0CisbuYYzi0dX2UKGgGaAloD0MI8Q2Fz5YQcUCUhpRSlGgVTdMBaBZHQKKzxm6oVEd1fZQoaAZoCWgPQwiSlPQwtEFvQJSGlFKUaBVNZwFoFkdAorTVNpM6BHV9lChoBmgJaA9DCJoLXB5rz19AlIaUUpRoFU3oA2gWR0CiuVoQ4CIUdX2UKGgGaAloD0MIoib6fNSscECUhpRSlGgVTZoBaBZHQKK6/Sncclx1fZQoaAZoCWgPQwgOoyB4fFZuQJSGlFKUaBVNdgFoFkdAor2XAVO9FnV9lChoBmgJaA9DCPQ3oRCBK29AlIaUUpRoFU2YAWgWR0Civ7sgMc6vdX2UKGgGaAloD0MIsWoQ5naPbkCUhpRSlGgVTU8BaBZHQKLCDFcY64l1fZQoaAZoCWgPQwgBMJ5BQ68awJSGlFKUaBVNMgFoFkdAosLxradtmHV9lChoBmgJaA9DCKn4vyMq3G1AlIaUUpRoFU2HAWgWR0CixDdb5dnkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd7dfc3a892dc87a3388e3daaabc09cca6e648806fefa6365e263b36b0d520f6
3
+ size 146767
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f885bf15e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f885bf15ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f885bf15f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f885bf16040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f885bf160d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f885bf16160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f885bf161f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f885bf16280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f885bf16310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f885bf163a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f885bf16430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f885bf164c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f885bf17340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1000448,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678329806010373446,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFBZVr5sdus8rb/zulWKszlINYW+Qqc2OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.00044800000000000395,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8zy4OyuzcUCUhpRSlIwBbJRNagGMAXSUR0CiCiJ+tr9EdX2UKGgGaAloD0MIxM9/D15ocUCUhpRSlGgVTfABaBZHQKINUSpR4yJ1fZQoaAZoCWgPQwjZJhWNtapsQJSGlFKUaBVNRgFoFkdAog7QbXHzYnV9lChoBmgJaA9DCCzVBbwMm3BAlIaUUpRoFU19AWgWR0CiEH1m8M/hdX2UKGgGaAloD0MIT1q4rEKQb0CUhpRSlGgVTdgBaBZHQKITPrIHTql1fZQoaAZoCWgPQwjv5qkOOT9rQJSGlFKUaBVNYwFoFkdAohRvr6ciGHV9lChoBmgJaA9DCM2tEFbjjGxAlIaUUpRoFU07AWgWR0CiFWlVLi++dX2UKGgGaAloD0MIQIS4cvZeb0CUhpRSlGgVTcABaBZHQKIXmrf+CK91fZQoaAZoCWgPQwi5N79hotkiQJSGlFKUaBVNGwFoFkdAohhkRtgrpnV9lChoBmgJaA9DCMMpc/MN52xAlIaUUpRoFU2LAWgWR0CiGkmL1mJ4dX2UKGgGaAloD0MIc7hWe9h7bUCUhpRSlGgVTdsBaBZHQKIcfpHI6sB1fZQoaAZoCWgPQwjZtb3dkghvQJSGlFKUaBVNfAFoFkdAoh43jsD4g3V9lChoBmgJaA9DCK/MW3UdcW1AlIaUUpRoFU2gAWgWR0CiIQbyQPqcdX2UKGgGaAloD0MIXU4JiMn2b0CUhpRSlGgVTWwBaBZHQKIimB4lhPV1fZQoaAZoCWgPQwiMLm8OVxdxQJSGlFKUaBVNsgFoFkdAoiTF8Aq/d3V9lChoBmgJaA9DCAfSxaYVZ3FAlIaUUpRoFU3WAWgWR0CiJoCLMs6JdX2UKGgGaAloD0MI5ulcUYpscECUhpRSlGgVTT8BaBZHQKInxU/fO2R1fZQoaAZoCWgPQwhavFgYou1sQJSGlFKUaBVNWwFoFkdAoioM+eOGTXV9lChoBmgJaA9DCPj/ccKE63BAlIaUUpRoFU2nAWgWR0CiLBxMnJDFdX2UKGgGaAloD0MIb/YHyu2zbkCUhpRSlGgVTXwBaBZHQKIt3g88s+V1fZQoaAZoCWgPQwidSgaAKndsQJSGlFKUaBVNswFoFkdAojBpDst03nV9lChoBmgJaA9DCHO8AtETpGRAlIaUUpRoFU3oA2gWR0CiNGphnanKdX2UKGgGaAloD0MI527XS9OOa0CUhpRSlGgVTUwBaBZHQKI1flNDc/N1fZQoaAZoCWgPQwgPSMK+nYRuQJSGlFKUaBVNfAFoFkdAojdQRsdkrnV9lChoBmgJaA9DCPp8lBEXwnBAlIaUUpRoFU1LAWgWR0CiOGE0zj3mdX2UKGgGaAloD0MIWKoLeBmBbkCUhpRSlGgVTTIBaBZHQKI5T5tWMjx1fZQoaAZoCWgPQwh+dOrKp1dwQJSGlFKUaBVNzgFoFkdAojtKy4Wk8HV9lChoBmgJaA9DCEijAifbfm5AlIaUUpRoFU23AWgWR0CiPNwhGH58dX2UKGgGaAloD0MICaUvhNyGcUCUhpRSlGgVTbcBaBZHQKI/D4bjtHB1fZQoaAZoCWgPQwiNmq+Sj1tvQJSGlFKUaBVNswFoFkdAokBv6l+Ey3V9lChoBmgJaA9DCL/VOnG5gmxAlIaUUpRoFU2WAWgWR0CiQccoYvWZdX2UKGgGaAloD0MIC/Dd5o0JcUCUhpRSlGgVTVYBaBZHQKJDhvhqCYl1fZQoaAZoCWgPQwikG2FREaRtQJSGlFKUaBVNoAFoFkdAokVlRekYXXV9lChoBmgJaA9DCJnwS/08+mpAlIaUUpRoFU19AWgWR0CiRyp/PPcBdX2UKGgGaAloD0MIVB9I3rlaYkCUhpRSlGgVTegDaBZHQKJNO7A+IM11fZQoaAZoCWgPQwioOA68ml9wQJSGlFKUaBVNugFoFkdAok9hvm5lOHV9lChoBmgJaA9DCCgLX19rVXFAlIaUUpRoFU3IAWgWR0CiUNepwS8KdX2UKGgGaAloD0MIK4pXWdvqb0CUhpRSlGgVTaUBaBZHQKJSw/O+qR51fZQoaAZoCWgPQwgpPj4hO7ltQJSGlFKUaBVNVwFoFkdAolPsSIxgzHV9lChoBmgJaA9DCA9CQL7EOnBAlIaUUpRoFU3LAWgWR0CiVZCqZML4dX2UKGgGaAloD0MI1T4dj5msbkCUhpRSlGgVTX8BaBZHQKJXm7jDKo11fZQoaAZoCWgPQwgv3LkwUsZuQJSGlFKUaBVNqQFoFkdAolkoUFjd6HV9lChoBmgJaA9DCK3boPZbWzdAlIaUUpRoFUvnaBZHQKJZzGYKIBR1fZQoaAZoCWgPQwgKE0azslhsQJSGlFKUaBVNkQFoFkdAoluuZZ0Sy3V9lChoBmgJaA9DCGmrksj+QHBAlIaUUpRoFU2uAWgWR0CiXPgTRIBjdX2UKGgGaAloD0MIGhU42QaoaUCUhpRSlGgVTaQBaBZHQKJfAgrYoRZ1fZQoaAZoCWgPQwiRKR+CKkhvQJSGlFKUaBVN4gFoFkdAomDai48U23V9lChoBmgJaA9DCLa6nBIQlmtAlIaUUpRoFU1/AWgWR0CiY2A0bcXWdX2UKGgGaAloD0MIdH0fDhJ0bUCUhpRSlGgVTWgBaBZHQKJk8d0aIep1fZQoaAZoCWgPQwjvHTUmROFwQJSGlFKUaBVNlgFoFkdAombB+6RQrXV9lChoBmgJaA9DCNQP6iIFSm9AlIaUUpRoFU2HAWgWR0CiaaXUhFEzdX2UKGgGaAloD0MICY1g4/pfcECUhpRSlGgVTT4BaBZHQKJqohcqvvB1fZQoaAZoCWgPQwhg5jv4iaFtQJSGlFKUaBVNrAFoFkdAomwNHUc4pHV9lChoBmgJaA9DCE4LXvTVQXBAlIaUUpRoFU15AWgWR0CibdKs+3YudX2UKGgGaAloD0MIBirj32cZbECUhpRSlGgVTU0BaBZHQKJu2yjYZl51fZQoaAZoCWgPQwi4rpgR3lRqQJSGlFKUaBVN9wFoFkdAonFiGHpKSXV9lChoBmgJaA9DCEGd8uhG8GtAlIaUUpRoFU1+AWgWR0CicpzJyQxOdX2UKGgGaAloD0MIzA2GOqzycECUhpRSlGgVTUsBaBZHQKJzlT0g8r91fZQoaAZoCWgPQwhrJ0pCoqtvQJSGlFKUaBVNxQFoFkdAonWTVDrquHV9lChoBmgJaA9DCO0seqeCQWpAlIaUUpRoFU3WAWgWR0Cid2HMlkYodX2UKGgGaAloD0MIbRrba0G2bkCUhpRSlGgVTbkBaBZHQKJ5ceXAuZl1fZQoaAZoCWgPQwiNtb+zPQI7QJSGlFKUaBVL8mgWR0Ciehxm9QGfdX2UKGgGaAloD0MIlUbM7HM2YkCUhpRSlGgVTegDaBZHQKJ+b1zQu291fZQoaAZoCWgPQwg1fAvrRnxtQJSGlFKUaBVNfwFoFkdAooAQcFQl8nV9lChoBmgJaA9DCFx0stS6cXBAlIaUUpRoFU22AWgWR0CigxMAeaKDdX2UKGgGaAloD0MIpfj4hCy/cECUhpRSlGgVTVoBaBZHQKKErPAO8TV1fZQoaAZoCWgPQwiCNjl8UgZvQJSGlFKUaBVNtQFoFkdAoobh7HAAQ3V9lChoBmgJaA9DCBA+lGiJAXBAlIaUUpRoFU0UA2gWR0CiilQ8wHqvdX2UKGgGaAloD0MI9goL7sd7cECUhpRSlGgVTaUBaBZHQKKMWtYB/7V1fZQoaAZoCWgPQwiOVyB6kotxQJSGlFKUaBVNTwFoFkdAoo1Z+BpYcXV9lChoBmgJaA9DCEuTUtDtJdM/lIaUUpRoFUv3aBZHQKKOCnYxtYV1fZQoaAZoCWgPQwit+fGXlmNqQJSGlFKUaBVNcQFoFkdAoo/ackMTe3V9lChoBmgJaA9DCITwaOOIJG9AlIaUUpRoFU2aAWgWR0CikSRu0kWzdX2UKGgGaAloD0MIbxEY6xuwa0CUhpRSlGgVTWIBaBZHQKKSRNZeRgZ1fZQoaAZoCWgPQwhVUbzK2htqQJSGlFKUaBVNWAFoFkdAopP2s7uDz3V9lChoBmgJaA9DCCGtMejERXFAlIaUUpRoFU3BAWgWR0CilYo3R5TqdX2UKGgGaAloD0MI/mFLj6ava0CUhpRSlGgVTakDaBZHQKKaJXEIgNh1fZQoaAZoCWgPQwichxOYzu5rQJSGlFKUaBVNagFoFkdAopt5jUd7wHV9lChoBmgJaA9DCF726043cHFAlIaUUpRoFU2vAWgWR0CinkILgGbDdX2UKGgGaAloD0MIC+9yEd92cUCUhpRSlGgVTXABaBZHQKKf28yvcJt1fZQoaAZoCWgPQwh4f7xXLf5qQJSGlFKUaBVNcwFoFkdAoqGufmLcbnV9lChoBmgJaA9DCBcQWg/fLG9AlIaUUpRoFU2tAWgWR0CipJvcafjCdX2UKGgGaAloD0MI14nL8crscECUhpRSlGgVTbEBaBZHQKKl7qk/KQt1fZQoaAZoCWgPQwhsBU1LLJ9sQJSGlFKUaBVNeQFoFkdAoqfJMajveHV9lChoBmgJaA9DCI/DYP6Kd29AlIaUUpRoFU10AWgWR0CiqRA5aNdadX2UKGgGaAloD0MI6C0e3nOKaUCUhpRSlGgVTXIBaBZHQKKqMHEdeY51fZQoaAZoCWgPQwiJfQIoRsFwQJSGlFKUaBVNaAFoFkdAoqwRv99+gHV9lChoBmgJaA9DCNo4Yi0+i2tAlIaUUpRoFU2mAWgWR0CirZQq7ROUdX2UKGgGaAloD0MI1jkGZK9wcECUhpRSlGgVTZsBaBZHQKKvb7b+Lm91fZQoaAZoCWgPQwgyWHGqtUtwQJSGlFKUaBVNVwFoFkdAorCAiV0LdHV9lChoBmgJaA9DCOdQhqoYRW9AlIaUUpRoFU1vAWgWR0CisbuYYzi0dX2UKGgGaAloD0MI8Q2Fz5YQcUCUhpRSlGgVTdMBaBZHQKKzxm6oVEd1fZQoaAZoCWgPQwiSlPQwtEFvQJSGlFKUaBVNZwFoFkdAorTVNpM6BHV9lChoBmgJaA9DCJoLXB5rz19AlIaUUpRoFU3oA2gWR0CiuVoQ4CIUdX2UKGgGaAloD0MIoib6fNSscECUhpRSlGgVTZoBaBZHQKK6/Sncclx1fZQoaAZoCWgPQwgOoyB4fFZuQJSGlFKUaBVNdgFoFkdAor2XAVO9FnV9lChoBmgJaA9DCPQ3oRCBK29AlIaUUpRoFU2YAWgWR0Civ7sgMc6vdX2UKGgGaAloD0MIsWoQ5naPbkCUhpRSlGgVTU8BaBZHQKLCDFcY64l1fZQoaAZoCWgPQwgBMJ5BQ68awJSGlFKUaBVNMgFoFkdAosLxradtmHV9lChoBmgJaA9DCKn4vyMq3G1AlIaUUpRoFU2HAWgWR0CixDdb5dnkdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 3908,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14efa5a17c9570b6bd26fb2357a3eeadc54320082e22269a7a0beb095698b8a5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2d696c07c1d18db8cd1100d0ab5f0f2ad0ac8c7107a960ca967b72d2e3981cb
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (204 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 227.62884374076097, "std_reward": 66.33651909828285, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T03:23:19.814323"}