KennethTM commited on
Commit
3b19791
·
1 Parent(s): 58f0a92

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -13
README.md CHANGED
@@ -15,36 +15,68 @@ library_name: sentence-transformers
15
 
16
  # MiniLM-L6-danish-encoder
17
 
18
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search. Maximum sequence length is 256 tokens.
19
 
20
- ## Usage (Sentence-Transformers)
 
 
 
 
21
 
22
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
23
 
24
  ```
25
  pip install -U sentence-transformers
26
  ```
27
-
28
  Then you can use the model like this:
29
 
30
  ```python
31
  from sentence_transformers import SentenceTransformer
32
- sentences = ["This is an example sentence", "Each sentence is converted"]
33
 
34
  model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
 
 
38
 
39
- ## Evaluation Results
 
 
 
40
 
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
 
 
 
 
42
 
43
- ## Full Model Architecture
44
- ```
45
- SentenceTransformer(
46
- (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
47
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
48
- (2): Normalize()
49
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  ```
 
 
 
 
 
 
15
 
16
  # MiniLM-L6-danish-encoder
17
 
18
+ This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search.
19
 
20
+ The maximum sequence length is 256 tokens.
21
+
22
+ The model was not pre-trained from scratch but adapted from the English version with a [tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish) trained on Danish text.
23
+
24
+ # Usage (Sentence-Transformers)
25
 
26
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
27
 
28
  ```
29
  pip install -U sentence-transformers
30
  ```
 
31
  Then you can use the model like this:
32
 
33
  ```python
34
  from sentence_transformers import SentenceTransformer
35
+ sentences = ["En mand løber vejen.", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
36
 
37
  model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder')
38
  embeddings = model.encode(sentences)
39
  print(embeddings)
40
  ```
41
+ # Usage (HuggingFace Transformers)
42
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
43
 
44
+ ```python
45
+ from transformers import AutoTokenizer, AutoModel
46
+ import torch
47
+ import torch.nn.functional as F
48
 
49
+ #Mean Pooling - Take attention mask into account for correct averaging
50
+ def mean_pooling(model_output, attention_mask):
51
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
52
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
53
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
54
 
55
+ # Sentences we want sentence embeddings for
56
+ sentences = ["En mand løber på vejen.", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
57
+
58
+ # Load model from HuggingFace Hub
59
+ tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
60
+ model = AutoModel.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
61
+
62
+ # Tokenize sentences
63
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
64
+
65
+ # Compute token embeddings
66
+ with torch.no_grad():
67
+ model_output = model(**encoded_input)
68
+
69
+ # Perform pooling
70
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
71
+
72
+ # Normalize embeddings
73
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
74
+
75
+ print("Sentence embeddings:")
76
+ print(sentence_embeddings)
77
  ```
78
+
79
+ # Evaluation
80
+
81
+ The performance of the pretrained model was evaluated using [ScandEval](https://github.com/ScandEval/ScandEval).
82
+