Update README.md
Browse files
README.md
CHANGED
@@ -15,36 +15,68 @@ library_name: sentence-transformers
|
|
15 |
|
16 |
# MiniLM-L6-danish-encoder
|
17 |
|
18 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
23 |
|
24 |
```
|
25 |
pip install -U sentence-transformers
|
26 |
```
|
27 |
-
|
28 |
Then you can use the model like this:
|
29 |
|
30 |
```python
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
-
sentences = ["
|
33 |
|
34 |
model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder')
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
```
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# MiniLM-L6-danish-encoder
|
17 |
|
18 |
+
This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
|
20 |
+
The maximum sequence length is 256 tokens.
|
21 |
+
|
22 |
+
The model was not pre-trained from scratch but adapted from the English version with a [tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish) trained on Danish text.
|
23 |
+
|
24 |
+
# Usage (Sentence-Transformers)
|
25 |
|
26 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
27 |
|
28 |
```
|
29 |
pip install -U sentence-transformers
|
30 |
```
|
|
|
31 |
Then you can use the model like this:
|
32 |
|
33 |
```python
|
34 |
from sentence_transformers import SentenceTransformer
|
35 |
+
sentences = ["En mand løber på vejen.", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
|
36 |
|
37 |
model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder')
|
38 |
embeddings = model.encode(sentences)
|
39 |
print(embeddings)
|
40 |
```
|
41 |
+
# Usage (HuggingFace Transformers)
|
42 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
43 |
|
44 |
+
```python
|
45 |
+
from transformers import AutoTokenizer, AutoModel
|
46 |
+
import torch
|
47 |
+
import torch.nn.functional as F
|
48 |
|
49 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
50 |
+
def mean_pooling(model_output, attention_mask):
|
51 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
52 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
53 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
54 |
|
55 |
+
# Sentences we want sentence embeddings for
|
56 |
+
sentences = ["En mand løber på vejen.", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
|
57 |
+
|
58 |
+
# Load model from HuggingFace Hub
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
|
60 |
+
model = AutoModel.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
|
61 |
+
|
62 |
+
# Tokenize sentences
|
63 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
64 |
+
|
65 |
+
# Compute token embeddings
|
66 |
+
with torch.no_grad():
|
67 |
+
model_output = model(**encoded_input)
|
68 |
+
|
69 |
+
# Perform pooling
|
70 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
71 |
+
|
72 |
+
# Normalize embeddings
|
73 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
74 |
+
|
75 |
+
print("Sentence embeddings:")
|
76 |
+
print(sentence_embeddings)
|
77 |
```
|
78 |
+
|
79 |
+
# Evaluation
|
80 |
+
|
81 |
+
The performance of the pretrained model was evaluated using [ScandEval](https://github.com/ScandEval/ScandEval).
|
82 |
+
|