|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import caffe |
|
import numpy as np |
|
from PIL import Image |
|
import os |
|
import argparse |
|
import sys |
|
import scipy.io as sio |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='batch proccesing: photos->edges') |
|
parser.add_argument('--caffe_root', dest='caffe_root', help='caffe root', default='../../', type=str) |
|
parser.add_argument('--caffemodel', dest='caffemodel', help='caffemodel', default='./hed_pretrained_bsds.caffemodel', type=str) |
|
parser.add_argument('--prototxt', dest='prototxt', help='caffe prototxt file', default='./deploy.prototxt', type=str) |
|
parser.add_argument('--images_dir', dest='images_dir', help='directory to store input photos', type=str) |
|
parser.add_argument('--hed_mat_dir', dest='hed_mat_dir', help='directory to store output hed edges in mat file', type=str) |
|
parser.add_argument('--border', dest='border', help='padding border', type=int, default=128) |
|
parser.add_argument('--gpu_id', dest='gpu_id', help='gpu id', type=int, default=1) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
args = parse_args() |
|
for arg in vars(args): |
|
print('[%s] =' % arg, getattr(args, arg)) |
|
|
|
caffe_root = args.caffe_root |
|
sys.path.insert(0, caffe_root + 'python') |
|
|
|
|
|
if not os.path.exists(args.hed_mat_dir): |
|
print('create output directory %s' % args.hed_mat_dir) |
|
os.makedirs(args.hed_mat_dir) |
|
|
|
imgList = os.listdir(args.images_dir) |
|
nImgs = len(imgList) |
|
print('#images = %d' % nImgs) |
|
|
|
caffe.set_mode_gpu() |
|
caffe.set_device(args.gpu_id) |
|
|
|
net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) |
|
|
|
border = args.border |
|
|
|
for i in range(nImgs): |
|
if i % 500 == 0: |
|
print('processing image %d/%d' % (i, nImgs)) |
|
im = Image.open(os.path.join(args.images_dir, imgList[i])) |
|
|
|
in_ = np.array(im, dtype=np.float32) |
|
in_ = np.pad(in_, ((border, border), (border, border), (0, 0)), 'reflect') |
|
|
|
in_ = in_[:, :, 0:3] |
|
in_ = in_[:, :, ::-1] |
|
in_ -= np.array((104.00698793, 116.66876762, 122.67891434)) |
|
in_ = in_.transpose((2, 0, 1)) |
|
|
|
|
|
|
|
net.blobs['data'].reshape(1, *in_.shape) |
|
net.blobs['data'].data[...] = in_ |
|
|
|
net.forward() |
|
fuse = net.blobs['sigmoid-fuse'].data[0][0, :, :] |
|
|
|
fuse = fuse[(border + 35):(-border + 35), (border + 35):(-border + 35)] |
|
|
|
name, ext = os.path.splitext(imgList[i]) |
|
sio.savemat(os.path.join(args.hed_mat_dir, name + '.mat'), {'edge_predict': fuse}) |
|
|