File size: 8,001 Bytes
96eb931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "view-in-github"
   },
   "source": [
    "<a href=\"https://colab.research.google.com/github/bkkaggle/pytorch-CycleGAN-and-pix2pix/blob/master/CycleGAN.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5VIGyIus8Vr7"
   },
   "source": [
    "Take a look at the [repository](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) for more information"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "7wNjDKdQy35h"
   },
   "source": [
    "# Install"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "TRm-USlsHgEV"
   },
   "outputs": [],
   "source": [
    "!git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "Pt3igws3eiVp"
   },
   "outputs": [],
   "source": [
    "import os\n",
    "os.chdir('pytorch-CycleGAN-and-pix2pix/')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "z1EySlOXwwoa"
   },
   "outputs": [],
   "source": [
    "!pip install -r requirements.txt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "8daqlgVhw29P"
   },
   "source": [
    "# Datasets\n",
    "\n",
    "Download one of the official datasets with:\n",
    "\n",
    "-   `bash ./datasets/download_cyclegan_dataset.sh [apple2orange, summer2winter_yosemite, horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos]`\n",
    "\n",
    "Or use your own dataset by creating the appropriate folders and adding in the images.\n",
    "\n",
    "-   Create a dataset folder under `/dataset` for your dataset.\n",
    "-   Create subfolders `testA`, `testB`, `trainA`, and `trainB` under your dataset's folder. Place any images you want to transform from a to b (cat2dog) in the `testA` folder, images you want to transform from b to a (dog2cat) in the `testB` folder, and do the same for the `trainA` and `trainB` folders."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "vrdOettJxaCc"
   },
   "outputs": [],
   "source": [
    "!bash ./datasets/download_cyclegan_dataset.sh horse2zebra"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "gdUz4116xhpm"
   },
   "source": [
    "# Pretrained models\n",
    "\n",
    "Download one of the official pretrained models with:\n",
    "\n",
    "-   `bash ./scripts/download_cyclegan_model.sh [apple2orange, orange2apple, summer2winter_yosemite, winter2summer_yosemite, horse2zebra, zebra2horse, monet2photo, style_monet, style_cezanne, style_ukiyoe, style_vangogh, sat2map, map2sat, cityscapes_photo2label, cityscapes_label2photo, facades_photo2label, facades_label2photo, iphone2dslr_flower]`\n",
    "\n",
    "Or add your own pretrained model to `./checkpoints/{NAME}_pretrained/latest_net_G.pt`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "B75UqtKhxznS"
   },
   "outputs": [],
   "source": [
    "!bash ./scripts/download_cyclegan_model.sh horse2zebra"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "yFw1kDQBx3LN"
   },
   "source": [
    "# Training\n",
    "\n",
    "-   `python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan`\n",
    "\n",
    "Change the `--dataroot` and `--name` to your own dataset's path and model's name. Use `--gpu_ids 0,1,..` to train on multiple GPUs and `--batch_size` to change the batch size. I've found that a batch size of 16 fits onto 4 V100s and can finish training an epoch in ~90s.\n",
    "\n",
    "Once your model has trained, copy over the last checkpoint to a format that the testing model can automatically detect:\n",
    "\n",
    "Use `cp ./checkpoints/horse2zebra/latest_net_G_A.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class A to class B and `cp ./checkpoints/horse2zebra/latest_net_G_B.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class B to class A.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "0sp7TCT2x9dB"
   },
   "outputs": [],
   "source": [
    "!python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan --display_id -1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "9UkcaFZiyASl"
   },
   "source": [
    "# Testing\n",
    "\n",
    "-   `python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout`\n",
    "\n",
    "Change the `--dataroot` and `--name` to be consistent with your trained model's configuration.\n",
    "\n",
    "> from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix:\n",
    "> The option --model test is used for generating results of CycleGAN only for one side. This option will automatically set --dataset_mode single, which only loads the images from one set. On the contrary, using --model cycle_gan requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.\n",
    "\n",
    "> For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "uCsKkEq0yGh0"
   },
   "outputs": [],
   "source": [
    "!python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "OzSKIPUByfiN"
   },
   "source": [
    "# Visualize"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "9Mgg8raPyizq"
   },
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_fake.png')\n",
    "plt.imshow(img)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "0G3oVH9DyqLQ"
   },
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_real.png')\n",
    "plt.imshow(img)"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "collapsed_sections": [],
   "include_colab_link": true,
   "name": "CycleGAN",
   "provenance": []
  },
  "environment": {
   "name": "tf2-gpu.2-3.m74",
   "type": "gcloud",
   "uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-3:m74"
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}